mirror of
https://github.com/zylon-ai/private-gpt.git
synced 2025-12-22 17:05:41 +01:00
Merge branch 'main' into feat/recipe-summary
# Conflicts: # private_gpt/launcher.py
This commit is contained in:
commit
3cd0580f67
20 changed files with 2429 additions and 2450 deletions
|
|
@ -8,7 +8,7 @@ inputs:
|
|||
poetry_version:
|
||||
required: true
|
||||
type: string
|
||||
default: "1.5.1"
|
||||
default: "1.8.3"
|
||||
|
||||
runs:
|
||||
using: composite
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@ FROM python:3.11.6-slim-bookworm as base
|
|||
# Install poetry
|
||||
RUN pip install pipx
|
||||
RUN python3 -m pipx ensurepath
|
||||
RUN pipx install poetry
|
||||
RUN pipx install poetry==1.8.3
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
ENV PATH=".venv/bin/:$PATH"
|
||||
|
||||
|
|
@ -14,27 +14,38 @@ FROM base as dependencies
|
|||
WORKDIR /home/worker/app
|
||||
COPY pyproject.toml poetry.lock ./
|
||||
|
||||
RUN poetry install --extras "ui vector-stores-qdrant llms-ollama embeddings-ollama"
|
||||
ARG POETRY_EXTRAS="ui vector-stores-qdrant llms-ollama embeddings-ollama"
|
||||
RUN poetry install --no-root --extras "${POETRY_EXTRAS}"
|
||||
|
||||
FROM base as app
|
||||
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV PORT=8080
|
||||
ENV APP_ENV=prod
|
||||
ENV PYTHONPATH="$PYTHONPATH:/home/worker/app/private_gpt/"
|
||||
EXPOSE 8080
|
||||
|
||||
# Prepare a non-root user
|
||||
RUN adduser --system worker
|
||||
# More info about how to configure UIDs and GIDs in Docker:
|
||||
# https://github.com/systemd/systemd/blob/main/docs/UIDS-GIDS.md
|
||||
|
||||
# Define the User ID (UID) for the non-root user
|
||||
# UID 100 is chosen to avoid conflicts with existing system users
|
||||
ARG UID=100
|
||||
|
||||
# Define the Group ID (GID) for the non-root user
|
||||
# GID 65534 is often used for the 'nogroup' or 'nobody' group
|
||||
ARG GID=65534
|
||||
|
||||
RUN adduser --system --gid ${GID} --uid ${UID} --home /home/worker worker
|
||||
WORKDIR /home/worker/app
|
||||
|
||||
RUN mkdir local_data; chown worker local_data
|
||||
RUN mkdir models; chown worker models
|
||||
RUN chown worker /home/worker/app
|
||||
RUN mkdir local_data && chown worker local_data
|
||||
RUN mkdir models && chown worker models
|
||||
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
|
||||
COPY --chown=worker private_gpt/ private_gpt
|
||||
COPY --chown=worker fern/ fern
|
||||
COPY --chown=worker *.yaml *.md ./
|
||||
COPY --chown=worker *.yaml .
|
||||
COPY --chown=worker scripts/ scripts
|
||||
|
||||
ENV PYTHONPATH="$PYTHONPATH:/private_gpt/"
|
||||
|
||||
USER worker
|
||||
ENTRYPOINT python -m private_gpt
|
||||
|
|
@ -5,7 +5,7 @@ FROM python:3.11.6-slim-bookworm as base
|
|||
# Install poetry
|
||||
RUN pip install pipx
|
||||
RUN python3 -m pipx ensurepath
|
||||
RUN pipx install poetry
|
||||
RUN pipx install poetry==1.8.3
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
ENV PATH=".venv/bin/:$PATH"
|
||||
|
||||
|
|
@ -24,28 +24,39 @@ FROM base as dependencies
|
|||
WORKDIR /home/worker/app
|
||||
COPY pyproject.toml poetry.lock ./
|
||||
|
||||
RUN poetry install --extras "ui embeddings-huggingface llms-llama-cpp vector-stores-qdrant"
|
||||
ARG POETRY_EXTRAS="ui embeddings-huggingface llms-llama-cpp vector-stores-qdrant"
|
||||
RUN poetry install --no-root --extras "${POETRY_EXTRAS}"
|
||||
|
||||
FROM base as app
|
||||
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV PORT=8080
|
||||
ENV APP_ENV=prod
|
||||
ENV PYTHONPATH="$PYTHONPATH:/home/worker/app/private_gpt/"
|
||||
EXPOSE 8080
|
||||
|
||||
# Prepare a non-root user
|
||||
RUN adduser --group worker
|
||||
RUN adduser --system --ingroup worker worker
|
||||
# More info about how to configure UIDs and GIDs in Docker:
|
||||
# https://github.com/systemd/systemd/blob/main/docs/UIDS-GIDS.md
|
||||
|
||||
# Define the User ID (UID) for the non-root user
|
||||
# UID 100 is chosen to avoid conflicts with existing system users
|
||||
ARG UID=100
|
||||
|
||||
# Define the Group ID (GID) for the non-root user
|
||||
# GID 65534 is often used for the 'nogroup' or 'nobody' group
|
||||
ARG GID=65534
|
||||
|
||||
RUN adduser --system --gid ${GID} --uid ${UID} --home /home/worker worker
|
||||
WORKDIR /home/worker/app
|
||||
|
||||
RUN mkdir local_data; chown worker local_data
|
||||
RUN mkdir models; chown worker models
|
||||
RUN chown worker /home/worker/app
|
||||
RUN mkdir local_data && chown worker local_data
|
||||
RUN mkdir models && chown worker models
|
||||
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
|
||||
COPY --chown=worker private_gpt/ private_gpt
|
||||
COPY --chown=worker fern/ fern
|
||||
COPY --chown=worker *.yaml *.md ./
|
||||
COPY --chown=worker *.yaml ./
|
||||
COPY --chown=worker scripts/ scripts
|
||||
|
||||
ENV PYTHONPATH="$PYTHONPATH:/private_gpt/"
|
||||
|
||||
USER worker
|
||||
ENTRYPOINT python -m private_gpt
|
||||
|
|
@ -5,12 +5,15 @@ services:
|
|||
volumes:
|
||||
- ./local_data/:/home/worker/app/local_data
|
||||
ports:
|
||||
- 8001:8080
|
||||
- 8001:8001
|
||||
environment:
|
||||
PORT: 8080
|
||||
PORT: 8001
|
||||
PGPT_PROFILES: docker
|
||||
PGPT_MODE: ollama
|
||||
PGPT_EMBED_MODE: ollama
|
||||
ollama:
|
||||
image: ollama/ollama:latest
|
||||
ports:
|
||||
- 11434:11434
|
||||
volumes:
|
||||
- ./models:/root/.ollama
|
||||
|
|
|
|||
|
|
@ -28,6 +28,11 @@ pyenv local 3.11
|
|||
Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
|
||||
Follow the instructions on the official Poetry website to install it.
|
||||
|
||||
<Callout intent="warning">
|
||||
A bug exists in Poetry versions 1.7.0 and earlier. We strongly recommend upgrading to a tested version.
|
||||
To upgrade Poetry to latest tested version, run `poetry self update 1.8.3` after installing it.
|
||||
</Callout>
|
||||
|
||||
### 4. Optional: Install `make`
|
||||
To run various scripts, you need to install `make`. Follow the instructions for your operating system:
|
||||
#### macOS
|
||||
|
|
@ -135,14 +140,14 @@ Now, start Ollama service (it will start a local inference server, serving both
|
|||
ollama serve
|
||||
```
|
||||
|
||||
Install the models to be used, the default settings-ollama.yaml is configured to user mistral 7b LLM (~4GB) and nomic-embed-text Embeddings (~275MB)
|
||||
Install the models to be used, the default settings-ollama.yaml is configured to user llama3.1 8b LLM (~4GB) and nomic-embed-text Embeddings (~275MB)
|
||||
|
||||
By default, PGPT will automatically pull models as needed. This behavior can be changed by modifying the `ollama.autopull_models` property.
|
||||
|
||||
In any case, if you want to manually pull models, run the following commands:
|
||||
|
||||
```bash
|
||||
ollama pull mistral
|
||||
ollama pull llama3.1
|
||||
ollama pull nomic-embed-text
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -24,8 +24,26 @@ PrivateGPT uses the `AutoTokenizer` library to tokenize input text accurately. I
|
|||
In your `settings.yaml` file, specify the model you want to use:
|
||||
```yaml
|
||||
llm:
|
||||
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
|
||||
tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
|
||||
```
|
||||
2. **Set Access Token for Gated Models:**
|
||||
If you are using a gated model, ensure the `access_token` is set as mentioned in the previous section.
|
||||
This configuration ensures that PrivateGPT can download and use the correct tokenizer for the model you are working with.
|
||||
|
||||
# Embedding dimensions mismatch
|
||||
If you encounter an error message like `Embedding dimensions mismatch`, it is likely due to the embedding model and
|
||||
current vector dimension mismatch. To resolve this issue, ensure that the model and the input data have the same vector dimensions.
|
||||
|
||||
By default, PrivateGPT uses `nomic-embed-text` embeddings, which have a vector dimension of 768.
|
||||
If you are using a different embedding model, ensure that the vector dimensions match the model's output.
|
||||
|
||||
<Callout intent = "warning">
|
||||
In versions below to 0.6.0, the default embedding model was `BAAI/bge-small-en-v1.5` in `huggingface` setup.
|
||||
If you plan to reuse the old generated embeddings, you need to update the `settings.yaml` file to use the correct embedding model:
|
||||
```yaml
|
||||
huggingface:
|
||||
embedding_hf_model_name: BAAI/bge-small-en-v1.5
|
||||
embedding:
|
||||
embed_dim: 384
|
||||
```
|
||||
</Callout>
|
||||
|
|
@ -8,6 +8,14 @@ The ingestion of documents can be done in different ways:
|
|||
|
||||
## Bulk Local Ingestion
|
||||
|
||||
You will need to activate `data.local_ingestion.enabled` in your setting file to use this feature. Additionally,
|
||||
it is probably a good idea to set `data.local_ingestion.allow_ingest_from` to specify which folders are allowed to be ingested.
|
||||
|
||||
<Callout intent = "warning">
|
||||
Be careful enabling this feature in a production environment, as it can be a security risk, as it allows users to
|
||||
ingest any local file with permissions.
|
||||
</Callout>
|
||||
|
||||
When you are running PrivateGPT in a fully local setup, you can ingest a complete folder for convenience (containing
|
||||
pdf, text files, etc.)
|
||||
and optionally watch changes on it with the command:
|
||||
|
|
|
|||
4581
poetry.lock
generated
4581
poetry.lock
generated
File diff suppressed because it is too large
Load diff
|
|
@ -169,7 +169,7 @@ class Llama3PromptStyle(AbstractPromptStyle):
|
|||
"""
|
||||
|
||||
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
|
||||
prompt = self.BOS
|
||||
prompt = ""
|
||||
has_system_message = False
|
||||
|
||||
for i, message in enumerate(messages):
|
||||
|
|
@ -189,8 +189,7 @@ class Llama3PromptStyle(AbstractPromptStyle):
|
|||
# Add default system prompt if no system message was provided
|
||||
if not has_system_message:
|
||||
prompt = (
|
||||
f"{self.BOS}{self.B_SYS}\n\n{self.DEFAULT_SYSTEM_PROMPT}{self.E_SYS}"
|
||||
+ prompt[len(self.BOS) :]
|
||||
f"{self.B_SYS}\n\n{self.DEFAULT_SYSTEM_PROMPT}{self.E_SYS}" + prompt
|
||||
)
|
||||
|
||||
# TODO: Implement tool handling logic
|
||||
|
|
@ -199,7 +198,7 @@ class Llama3PromptStyle(AbstractPromptStyle):
|
|||
|
||||
def _completion_to_prompt(self, completion: str) -> str:
|
||||
return (
|
||||
f"{self.BOS}{self.B_SYS}\n\n{self.DEFAULT_SYSTEM_PROMPT}{self.E_SYS}"
|
||||
f"{self.B_SYS}\n\n{self.DEFAULT_SYSTEM_PROMPT}{self.E_SYS}"
|
||||
f"{self.B_INST}user{self.E_INST}\n\n{completion.strip()}{self.EOT}"
|
||||
f"{self.ASSISTANT_INST}\n\n"
|
||||
)
|
||||
|
|
|
|||
|
|
@ -59,6 +59,27 @@ class AuthSettings(BaseModel):
|
|||
)
|
||||
|
||||
|
||||
class IngestionSettings(BaseModel):
|
||||
"""Ingestion configuration.
|
||||
|
||||
This configuration is used to control the ingestion of data into the system
|
||||
using non-server methods. This is useful for local development and testing;
|
||||
or to ingest in bulk from a folder.
|
||||
|
||||
Please note that this configuration is not secure and should be used in
|
||||
a controlled environment only (setting right permissions, etc.).
|
||||
"""
|
||||
|
||||
enabled: bool = Field(
|
||||
description="Flag indicating if local ingestion is enabled or not.",
|
||||
default=False,
|
||||
)
|
||||
allow_ingest_from: list[str] = Field(
|
||||
description="A list of folders that should be permitted to make ingest requests.",
|
||||
default=[],
|
||||
)
|
||||
|
||||
|
||||
class ServerSettings(BaseModel):
|
||||
env_name: str = Field(
|
||||
description="Name of the environment (prod, staging, local...)"
|
||||
|
|
@ -74,6 +95,10 @@ class ServerSettings(BaseModel):
|
|||
|
||||
|
||||
class DataSettings(BaseModel):
|
||||
local_ingestion: IngestionSettings = Field(
|
||||
description="Ingestion configuration",
|
||||
default_factory=lambda: IngestionSettings(allow_ingest_from=["*"]),
|
||||
)
|
||||
local_data_folder: str = Field(
|
||||
description="Path to local storage."
|
||||
"It will be treated as an absolute path if it starts with /"
|
||||
|
|
|
|||
|
|
@ -384,7 +384,7 @@ class PrivateGptUi:
|
|||
"hr { margin-top: 1em; margin-bottom: 1em; border: 0; border-top: 1px solid #FFF; }"
|
||||
".avatar-image { background-color: antiquewhite; border-radius: 2px; }"
|
||||
".footer { text-align: center; margin-top: 20px; font-size: 14px; display: flex; align-items: center; justify-content: center; }"
|
||||
".footer-zylon-link { display:flex; margin-left: 5px; text-decoration: auto; color: #fff; }"
|
||||
".footer-zylon-link { display:flex; margin-left: 5px; text-decoration: auto; color: var(--body-text-color); }"
|
||||
".footer-zylon-link:hover { color: #C7BAFF; }"
|
||||
".footer-zylon-ico { height: 20px; margin-left: 5px; background-color: antiquewhite; border-radius: 2px; }",
|
||||
) as blocks:
|
||||
|
|
|
|||
|
|
@ -7,12 +7,13 @@ from pathlib import Path
|
|||
from private_gpt.di import global_injector
|
||||
from private_gpt.server.ingest.ingest_service import IngestService
|
||||
from private_gpt.server.ingest.ingest_watcher import IngestWatcher
|
||||
from private_gpt.settings.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LocalIngestWorker:
|
||||
def __init__(self, ingest_service: IngestService) -> None:
|
||||
def __init__(self, ingest_service: IngestService, setting: Settings) -> None:
|
||||
self.ingest_service = ingest_service
|
||||
|
||||
self.total_documents = 0
|
||||
|
|
@ -20,6 +21,24 @@ class LocalIngestWorker:
|
|||
|
||||
self._files_under_root_folder: list[Path] = []
|
||||
|
||||
self.is_local_ingestion_enabled = setting.data.local_ingestion.enabled
|
||||
self.allowed_local_folders = setting.data.local_ingestion.allow_ingest_from
|
||||
|
||||
def _validate_folder(self, folder_path: Path) -> None:
|
||||
if not self.is_local_ingestion_enabled:
|
||||
raise ValueError(
|
||||
"Local ingestion is disabled."
|
||||
"You can enable it in settings `ingestion.enabled`"
|
||||
)
|
||||
|
||||
# Allow all folders if wildcard is present
|
||||
if "*" in self.allowed_local_folders:
|
||||
return
|
||||
|
||||
for allowed_folder in self.allowed_local_folders:
|
||||
if not folder_path.is_relative_to(allowed_folder):
|
||||
raise ValueError(f"Folder {folder_path} is not allowed for ingestion")
|
||||
|
||||
def _find_all_files_in_folder(self, root_path: Path, ignored: list[str]) -> None:
|
||||
"""Search all files under the root folder recursively.
|
||||
|
||||
|
|
@ -28,6 +47,7 @@ class LocalIngestWorker:
|
|||
for file_path in root_path.iterdir():
|
||||
if file_path.is_file() and file_path.name not in ignored:
|
||||
self.total_documents += 1
|
||||
self._validate_folder(file_path)
|
||||
self._files_under_root_folder.append(file_path)
|
||||
elif file_path.is_dir() and file_path.name not in ignored:
|
||||
self._find_all_files_in_folder(file_path, ignored)
|
||||
|
|
@ -92,13 +112,13 @@ if args.log_file:
|
|||
logger.addHandler(file_handler)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
root_path = Path(args.folder)
|
||||
if not root_path.exists():
|
||||
raise ValueError(f"Path {args.folder} does not exist")
|
||||
|
||||
ingest_service = global_injector.get(IngestService)
|
||||
worker = LocalIngestWorker(ingest_service)
|
||||
settings = global_injector.get(Settings)
|
||||
worker = LocalIngestWorker(ingest_service, settings)
|
||||
worker.ingest_folder(root_path, args.ignored)
|
||||
|
||||
if args.ignored:
|
||||
|
|
|
|||
|
|
@ -6,21 +6,21 @@ llm:
|
|||
mode: ${PGPT_MODE:mock}
|
||||
|
||||
embedding:
|
||||
mode: ${PGPT_MODE:sagemaker}
|
||||
mode: ${PGPT_EMBED_MODE:mock}
|
||||
|
||||
llamacpp:
|
||||
llm_hf_repo_id: ${PGPT_HF_REPO_ID:TheBloke/Mistral-7B-Instruct-v0.1-GGUF}
|
||||
llm_hf_model_file: ${PGPT_HF_MODEL_FILE:mistral-7b-instruct-v0.1.Q4_K_M.gguf}
|
||||
llm_hf_repo_id: ${PGPT_HF_REPO_ID:lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF}
|
||||
llm_hf_model_file: ${PGPT_HF_MODEL_FILE:Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf}
|
||||
|
||||
huggingface:
|
||||
embedding_hf_model_name: ${PGPT_EMBEDDING_HF_MODEL_NAME:BAAI/bge-small-en-v1.5}
|
||||
embedding_hf_model_name: ${PGPT_EMBEDDING_HF_MODEL_NAME:nomic-ai/nomic-embed-text-v1.5}
|
||||
|
||||
sagemaker:
|
||||
llm_endpoint_name: ${PGPT_SAGEMAKER_LLM_ENDPOINT_NAME:}
|
||||
embedding_endpoint_name: ${PGPT_SAGEMAKER_EMBEDDING_ENDPOINT_NAME:}
|
||||
|
||||
ollama:
|
||||
llm_model: ${PGPT_OLLAMA_LLM_MODEL:mistral}
|
||||
llm_model: ${PGPT_OLLAMA_LLM_MODEL:llama3.1}
|
||||
embedding_model: ${PGPT_OLLAMA_EMBEDDING_MODEL:nomic-embed-text}
|
||||
api_base: ${PGPT_OLLAMA_API_BASE:http://ollama:11434}
|
||||
embedding_api_base: ${PGPT_OLLAMA_EMBEDDING_API_BASE:http://ollama:11434}
|
||||
|
|
@ -30,6 +30,7 @@ ollama:
|
|||
repeat_last_n: ${PGPT_OLLAMA_REPEAT_LAST_N:64}
|
||||
repeat_penalty: ${PGPT_OLLAMA_REPEAT_PENALTY:1.2}
|
||||
request_timeout: ${PGPT_OLLAMA_REQUEST_TIMEOUT:600.0}
|
||||
autopull_models: ${PGPT_OLLAMA_AUTOPULL_MODELS:true}
|
||||
|
||||
ui:
|
||||
enabled: true
|
||||
|
|
|
|||
|
|
@ -7,18 +7,18 @@ llm:
|
|||
# Should be matching the selected model
|
||||
max_new_tokens: 512
|
||||
context_window: 3900
|
||||
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
|
||||
prompt_style: "mistral"
|
||||
tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
|
||||
prompt_style: "llama3"
|
||||
|
||||
llamacpp:
|
||||
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
|
||||
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
|
||||
llm_hf_repo_id: lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF
|
||||
llm_hf_model_file: Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
|
||||
|
||||
embedding:
|
||||
mode: huggingface
|
||||
|
||||
huggingface:
|
||||
embedding_hf_model_name: BAAI/bge-small-en-v1.5
|
||||
embedding_hf_model_name: nomic-ai/nomic-embed-text-v1.5
|
||||
|
||||
vectorstore:
|
||||
database: qdrant
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ embedding:
|
|||
embed_dim: 768
|
||||
|
||||
ollama:
|
||||
llm_model: mistral
|
||||
llm_model: llama3.1
|
||||
embedding_model: nomic-embed-text
|
||||
api_base: http://localhost:11434
|
||||
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ embedding:
|
|||
mode: ollama
|
||||
|
||||
ollama:
|
||||
llm_model: mistral
|
||||
llm_model: llama3.1
|
||||
embedding_model: nomic-embed-text
|
||||
api_base: http://localhost:11434
|
||||
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@ server:
|
|||
llm:
|
||||
mode: openailike
|
||||
max_new_tokens: 512
|
||||
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
|
||||
tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
|
||||
temperature: 0.1
|
||||
|
||||
embedding:
|
||||
|
|
@ -12,7 +12,7 @@ embedding:
|
|||
ingest_mode: simple
|
||||
|
||||
huggingface:
|
||||
embedding_hf_model_name: BAAI/bge-small-en-v1.5
|
||||
embedding_hf_model_name: nomic-ai/nomic-embed-text-v1.5
|
||||
|
||||
openai:
|
||||
api_base: http://localhost:8000/v1
|
||||
|
|
|
|||
|
|
@ -17,6 +17,9 @@ server:
|
|||
secret: "Basic c2VjcmV0OmtleQ=="
|
||||
|
||||
data:
|
||||
local_ingestion:
|
||||
enabled: ${LOCAL_INGESTION_ENABLED:false}
|
||||
allow_ingest_from: ["*"]
|
||||
local_data_folder: local_data/private_gpt
|
||||
|
||||
ui:
|
||||
|
|
@ -43,12 +46,12 @@ ui:
|
|||
|
||||
llm:
|
||||
mode: llamacpp
|
||||
prompt_style: "mistral"
|
||||
prompt_style: "llama3"
|
||||
# Should be matching the selected model
|
||||
max_new_tokens: 512
|
||||
context_window: 3900
|
||||
# Select your tokenizer. Llama-index tokenizer is the default.
|
||||
# tokenizer: mistralai/Mistral-7B-Instruct-v0.2
|
||||
# tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
|
||||
temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
|
||||
|
||||
rag:
|
||||
|
|
@ -72,8 +75,8 @@ clickhouse:
|
|||
database: embeddings
|
||||
|
||||
llamacpp:
|
||||
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
|
||||
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
|
||||
llm_hf_repo_id: lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF
|
||||
llm_hf_model_file: Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
|
||||
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting
|
||||
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
|
||||
top_p: 1.0 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
|
||||
|
|
@ -83,10 +86,10 @@ embedding:
|
|||
# Should be matching the value above in most cases
|
||||
mode: huggingface
|
||||
ingest_mode: simple
|
||||
embed_dim: 384 # 384 is for BAAI/bge-small-en-v1.5
|
||||
embed_dim: 768 # 768 is for nomic-ai/nomic-embed-text-v1.5
|
||||
|
||||
huggingface:
|
||||
embedding_hf_model_name: BAAI/bge-small-en-v1.5
|
||||
embedding_hf_model_name: nomic-ai/nomic-embed-text-v1.5
|
||||
access_token: ${HF_TOKEN:}
|
||||
|
||||
vectorstore:
|
||||
|
|
@ -121,7 +124,7 @@ openai:
|
|||
embedding_api_key: ${OPENAI_API_KEY:}
|
||||
|
||||
ollama:
|
||||
llm_model: llama2
|
||||
llm_model: llama3.1
|
||||
embedding_model: nomic-embed-text
|
||||
api_base: http://localhost:11434
|
||||
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama
|
||||
|
|
|
|||
74
tests/server/ingest/test_local_ingest.py
Normal file
74
tests/server/ingest/test_local_ingest.py
Normal file
|
|
@ -0,0 +1,74 @@
|
|||
import os
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
from fastapi.testclient import TestClient
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def file_path() -> str:
|
||||
return "test.txt"
|
||||
|
||||
|
||||
def create_test_file(file_path: str) -> None:
|
||||
with open(file_path, "w") as f:
|
||||
f.write("test")
|
||||
|
||||
|
||||
def clear_log_file(log_file_path: str) -> None:
|
||||
if Path(log_file_path).exists():
|
||||
os.remove(log_file_path)
|
||||
|
||||
|
||||
def read_log_file(log_file_path: str) -> str:
|
||||
with open(log_file_path) as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
def init_structure(folder: str, file_path: str) -> None:
|
||||
clear_log_file(file_path)
|
||||
os.makedirs(folder, exist_ok=True)
|
||||
create_test_file(f"{folder}/${file_path}")
|
||||
|
||||
|
||||
def test_ingest_one_file_in_allowed_folder(
|
||||
file_path: str, test_client: TestClient
|
||||
) -> None:
|
||||
allowed_folder = "local_data/tests/allowed_folder"
|
||||
init_structure(allowed_folder, file_path)
|
||||
|
||||
test_env = os.environ.copy()
|
||||
test_env["PGPT_PROFILES"] = "test"
|
||||
test_env["LOCAL_INGESTION_ENABLED"] = "True"
|
||||
|
||||
result = subprocess.run(
|
||||
["python", "scripts/ingest_folder.py", allowed_folder],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
env=test_env,
|
||||
)
|
||||
|
||||
assert result.returncode == 0, f"Script failed with error: {result.stderr}"
|
||||
response_after = test_client.get("/v1/ingest/list")
|
||||
|
||||
count_ingest_after = len(response_after.json()["data"])
|
||||
assert count_ingest_after > 0, "No documents were ingested"
|
||||
|
||||
|
||||
def test_ingest_disabled(file_path: str) -> None:
|
||||
allowed_folder = "local_data/tests/allowed_folder"
|
||||
init_structure(allowed_folder, file_path)
|
||||
|
||||
test_env = os.environ.copy()
|
||||
test_env["PGPT_PROFILES"] = "test"
|
||||
test_env["LOCAL_INGESTION_ENABLED"] = "False"
|
||||
|
||||
result = subprocess.run(
|
||||
["python", "scripts/ingest_folder.py", allowed_folder],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
env=test_env,
|
||||
)
|
||||
|
||||
assert result.returncode != 0, f"Script failed with error: {result.stderr}"
|
||||
|
|
@ -150,7 +150,7 @@ def test_llama3_prompt_style_format():
|
|||
]
|
||||
|
||||
expected_prompt = (
|
||||
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
|
||||
"<|start_header_id|>system<|end_header_id|>\n\n"
|
||||
"You are a helpful assistant<|eot_id|>"
|
||||
"<|start_header_id|>user<|end_header_id|>\n\n"
|
||||
"Hello, how are you doing?<|eot_id|>"
|
||||
|
|
@ -166,7 +166,7 @@ def test_llama3_prompt_style_with_default_system():
|
|||
ChatMessage(content="Hello!", role=MessageRole.USER),
|
||||
]
|
||||
expected = (
|
||||
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
|
||||
"<|start_header_id|>system<|end_header_id|>\n\n"
|
||||
f"{prompt_style.DEFAULT_SYSTEM_PROMPT}<|eot_id|>"
|
||||
"<|start_header_id|>user<|end_header_id|>\n\nHello!<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
|
|
@ -185,7 +185,7 @@ def test_llama3_prompt_style_with_assistant_response():
|
|||
]
|
||||
|
||||
expected_prompt = (
|
||||
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
|
||||
"<|start_header_id|>system<|end_header_id|>\n\n"
|
||||
"You are a helpful assistant<|eot_id|>"
|
||||
"<|start_header_id|>user<|end_header_id|>\n\n"
|
||||
"What is the capital of France?<|eot_id|>"
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue