mirror of
https://github.com/zylon-ai/private-gpt.git
synced 2025-12-22 07:40:12 +01:00
feat(recipe): add our first recipe Summarize (#2028)
Some checks are pending
publish docs / publish-docs (push) Waiting to run
release-please / release-please (push) Waiting to run
tests / setup (push) Waiting to run
tests / ${{ matrix.quality-command }} (black) (push) Blocked by required conditions
tests / ${{ matrix.quality-command }} (mypy) (push) Blocked by required conditions
tests / ${{ matrix.quality-command }} (ruff) (push) Blocked by required conditions
tests / test (push) Blocked by required conditions
tests / all_checks_passed (push) Blocked by required conditions
Some checks are pending
publish docs / publish-docs (push) Waiting to run
release-please / release-please (push) Waiting to run
tests / setup (push) Waiting to run
tests / ${{ matrix.quality-command }} (black) (push) Blocked by required conditions
tests / ${{ matrix.quality-command }} (mypy) (push) Blocked by required conditions
tests / ${{ matrix.quality-command }} (ruff) (push) Blocked by required conditions
tests / test (push) Blocked by required conditions
tests / all_checks_passed (push) Blocked by required conditions
* feat: add summary recipe * test: add summary tests * docs: move all recipes docs * docs: add recipes and summarize doc * docs: update openapi reference * refactor: split method in two method (summary) * feat: add initial summarize ui * feat: add mode explanation * fix: mypy * feat: allow to configure async property in summarize * refactor: move modes to enum and update mode explanations * docs: fix url * docs: remove list-llm pages * docs: remove double header * fix: summary description
This commit is contained in:
parent
40638a18a5
commit
8119842ae6
13 changed files with 743 additions and 148 deletions
|
|
@ -15,6 +15,7 @@ from private_gpt.server.completions.completions_router import completions_router
|
|||
from private_gpt.server.embeddings.embeddings_router import embeddings_router
|
||||
from private_gpt.server.health.health_router import health_router
|
||||
from private_gpt.server.ingest.ingest_router import ingest_router
|
||||
from private_gpt.server.recipes.summarize.summarize_router import summarize_router
|
||||
from private_gpt.settings.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
|
@ -32,12 +33,13 @@ def create_app(root_injector: Injector) -> FastAPI:
|
|||
app.include_router(chat_router)
|
||||
app.include_router(chunks_router)
|
||||
app.include_router(ingest_router)
|
||||
app.include_router(summarize_router)
|
||||
app.include_router(embeddings_router)
|
||||
app.include_router(health_router)
|
||||
|
||||
# Add LlamaIndex simple observability
|
||||
global_handler = create_global_handler("simple")
|
||||
if global_handler is not None:
|
||||
if global_handler:
|
||||
LlamaIndexSettings.callback_manager = CallbackManager([global_handler])
|
||||
|
||||
settings = root_injector.get(Settings)
|
||||
|
|
|
|||
0
private_gpt/server/recipes/summarize/__init__.py
Normal file
0
private_gpt/server/recipes/summarize/__init__.py
Normal file
86
private_gpt/server/recipes/summarize/summarize_router.py
Normal file
86
private_gpt/server/recipes/summarize/summarize_router.py
Normal file
|
|
@ -0,0 +1,86 @@
|
|||
from fastapi import APIRouter, Depends, Request
|
||||
from pydantic import BaseModel
|
||||
from starlette.responses import StreamingResponse
|
||||
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.open_ai.openai_models import (
|
||||
to_openai_sse_stream,
|
||||
)
|
||||
from private_gpt.server.recipes.summarize.summarize_service import SummarizeService
|
||||
from private_gpt.server.utils.auth import authenticated
|
||||
|
||||
summarize_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
|
||||
|
||||
|
||||
class SummarizeBody(BaseModel):
|
||||
text: str | None = None
|
||||
use_context: bool = False
|
||||
context_filter: ContextFilter | None = None
|
||||
prompt: str | None = None
|
||||
instructions: str | None = None
|
||||
stream: bool = False
|
||||
|
||||
|
||||
class SummarizeResponse(BaseModel):
|
||||
summary: str
|
||||
|
||||
|
||||
@summarize_router.post(
|
||||
"/summarize",
|
||||
response_model=None,
|
||||
summary="Summarize",
|
||||
responses={200: {"model": SummarizeResponse}},
|
||||
tags=["Recipes"],
|
||||
)
|
||||
def summarize(
|
||||
request: Request, body: SummarizeBody
|
||||
) -> SummarizeResponse | StreamingResponse:
|
||||
"""Given a text, the model will return a summary.
|
||||
|
||||
Optionally include `instructions` to influence the way the summary is generated.
|
||||
|
||||
If `use_context`
|
||||
is set to `true`, the model will also use the content coming from the ingested
|
||||
documents in the summary. The documents being used can
|
||||
be filtered by their metadata using the `context_filter`.
|
||||
Ingested documents metadata can be found using `/ingest/list` endpoint.
|
||||
If you want all ingested documents to be used, remove `context_filter` altogether.
|
||||
|
||||
If `prompt` is set, it will be used as the prompt for the summarization,
|
||||
otherwise the default prompt will be used.
|
||||
|
||||
When using `'stream': true`, the API will return data chunks following [OpenAI's
|
||||
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
|
||||
```
|
||||
{"id":"12345","object":"completion.chunk","created":1694268190,
|
||||
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
|
||||
"finish_reason":null}]}
|
||||
```
|
||||
"""
|
||||
service: SummarizeService = request.state.injector.get(SummarizeService)
|
||||
|
||||
if body.stream:
|
||||
completion_gen = service.stream_summarize(
|
||||
text=body.text,
|
||||
instructions=body.instructions,
|
||||
use_context=body.use_context,
|
||||
context_filter=body.context_filter,
|
||||
prompt=body.prompt,
|
||||
)
|
||||
return StreamingResponse(
|
||||
to_openai_sse_stream(
|
||||
response_generator=completion_gen,
|
||||
),
|
||||
media_type="text/event-stream",
|
||||
)
|
||||
else:
|
||||
completion = service.summarize(
|
||||
text=body.text,
|
||||
instructions=body.instructions,
|
||||
use_context=body.use_context,
|
||||
context_filter=body.context_filter,
|
||||
prompt=body.prompt,
|
||||
)
|
||||
return SummarizeResponse(
|
||||
summary=completion,
|
||||
)
|
||||
172
private_gpt/server/recipes/summarize/summarize_service.py
Normal file
172
private_gpt/server/recipes/summarize/summarize_service.py
Normal file
|
|
@ -0,0 +1,172 @@
|
|||
from itertools import chain
|
||||
|
||||
from injector import inject, singleton
|
||||
from llama_index.core import (
|
||||
Document,
|
||||
StorageContext,
|
||||
SummaryIndex,
|
||||
)
|
||||
from llama_index.core.base.response.schema import Response, StreamingResponse
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
from llama_index.core.response_synthesizers import ResponseMode
|
||||
from llama_index.core.storage.docstore.types import RefDocInfo
|
||||
from llama_index.core.types import TokenGen
|
||||
|
||||
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
||||
from private_gpt.components.llm.llm_component import LLMComponent
|
||||
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
|
||||
from private_gpt.components.vector_store.vector_store_component import (
|
||||
VectorStoreComponent,
|
||||
)
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.settings.settings import Settings
|
||||
|
||||
DEFAULT_SUMMARIZE_PROMPT = (
|
||||
"Provide a comprehensive summary of the provided context information. "
|
||||
"The summary should cover all the key points and main ideas presented in "
|
||||
"the original text, while also condensing the information into a concise "
|
||||
"and easy-to-understand format. Please ensure that the summary includes "
|
||||
"relevant details and examples that support the main ideas, while avoiding "
|
||||
"any unnecessary information or repetition."
|
||||
)
|
||||
|
||||
|
||||
@singleton
|
||||
class SummarizeService:
|
||||
@inject
|
||||
def __init__(
|
||||
self,
|
||||
settings: Settings,
|
||||
llm_component: LLMComponent,
|
||||
node_store_component: NodeStoreComponent,
|
||||
vector_store_component: VectorStoreComponent,
|
||||
embedding_component: EmbeddingComponent,
|
||||
) -> None:
|
||||
self.settings = settings
|
||||
self.llm_component = llm_component
|
||||
self.node_store_component = node_store_component
|
||||
self.vector_store_component = vector_store_component
|
||||
self.embedding_component = embedding_component
|
||||
self.storage_context = StorageContext.from_defaults(
|
||||
vector_store=vector_store_component.vector_store,
|
||||
docstore=node_store_component.doc_store,
|
||||
index_store=node_store_component.index_store,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _filter_ref_docs(
|
||||
ref_docs: dict[str, RefDocInfo], context_filter: ContextFilter | None
|
||||
) -> list[RefDocInfo]:
|
||||
if context_filter is None or not context_filter.docs_ids:
|
||||
return list(ref_docs.values())
|
||||
|
||||
return [
|
||||
ref_doc
|
||||
for doc_id, ref_doc in ref_docs.items()
|
||||
if doc_id in context_filter.docs_ids
|
||||
]
|
||||
|
||||
def _summarize(
|
||||
self,
|
||||
use_context: bool = False,
|
||||
stream: bool = False,
|
||||
text: str | None = None,
|
||||
instructions: str | None = None,
|
||||
context_filter: ContextFilter | None = None,
|
||||
prompt: str | None = None,
|
||||
) -> str | TokenGen:
|
||||
|
||||
nodes_to_summarize = []
|
||||
|
||||
# Add text to summarize
|
||||
if text:
|
||||
text_documents = [Document(text=text)]
|
||||
nodes_to_summarize += (
|
||||
SentenceSplitter.from_defaults().get_nodes_from_documents(
|
||||
text_documents
|
||||
)
|
||||
)
|
||||
|
||||
# Add context documents to summarize
|
||||
if use_context:
|
||||
# 1. Recover all ref docs
|
||||
ref_docs: dict[
|
||||
str, RefDocInfo
|
||||
] | None = self.storage_context.docstore.get_all_ref_doc_info()
|
||||
if ref_docs is None:
|
||||
raise ValueError("No documents have been ingested yet.")
|
||||
|
||||
# 2. Filter documents based on context_filter (if provided)
|
||||
filtered_ref_docs = self._filter_ref_docs(ref_docs, context_filter)
|
||||
|
||||
# 3. Get all nodes from the filtered documents
|
||||
filtered_node_ids = chain.from_iterable(
|
||||
[ref_doc.node_ids for ref_doc in filtered_ref_docs]
|
||||
)
|
||||
filtered_nodes = self.storage_context.docstore.get_nodes(
|
||||
node_ids=list(filtered_node_ids),
|
||||
)
|
||||
|
||||
nodes_to_summarize += filtered_nodes
|
||||
|
||||
# Create a SummaryIndex to summarize the nodes
|
||||
summary_index = SummaryIndex(
|
||||
nodes=nodes_to_summarize,
|
||||
storage_context=StorageContext.from_defaults(), # In memory SummaryIndex
|
||||
show_progress=True,
|
||||
)
|
||||
|
||||
# Make a tree summarization query
|
||||
# above the set of all candidate nodes
|
||||
query_engine = summary_index.as_query_engine(
|
||||
llm=self.llm_component.llm,
|
||||
response_mode=ResponseMode.TREE_SUMMARIZE,
|
||||
streaming=stream,
|
||||
use_async=self.settings.summarize.use_async,
|
||||
)
|
||||
|
||||
prompt = prompt or DEFAULT_SUMMARIZE_PROMPT
|
||||
|
||||
summarize_query = prompt + "\n" + (instructions or "")
|
||||
|
||||
response = query_engine.query(summarize_query)
|
||||
if isinstance(response, Response):
|
||||
return response.response or ""
|
||||
elif isinstance(response, StreamingResponse):
|
||||
return response.response_gen
|
||||
else:
|
||||
raise TypeError(f"The result is not of a supported type: {type(response)}")
|
||||
|
||||
def summarize(
|
||||
self,
|
||||
use_context: bool = False,
|
||||
text: str | None = None,
|
||||
instructions: str | None = None,
|
||||
context_filter: ContextFilter | None = None,
|
||||
prompt: str | None = None,
|
||||
) -> str:
|
||||
return self._summarize(
|
||||
use_context=use_context,
|
||||
stream=False,
|
||||
text=text,
|
||||
instructions=instructions,
|
||||
context_filter=context_filter,
|
||||
prompt=prompt,
|
||||
) # type: ignore
|
||||
|
||||
def stream_summarize(
|
||||
self,
|
||||
use_context: bool = False,
|
||||
text: str | None = None,
|
||||
instructions: str | None = None,
|
||||
context_filter: ContextFilter | None = None,
|
||||
prompt: str | None = None,
|
||||
) -> TokenGen:
|
||||
return self._summarize(
|
||||
use_context=use_context,
|
||||
stream=True,
|
||||
text=text,
|
||||
instructions=instructions,
|
||||
context_filter=context_filter,
|
||||
prompt=prompt,
|
||||
) # type: ignore
|
||||
|
|
@ -353,6 +353,10 @@ class UISettings(BaseModel):
|
|||
default_query_system_prompt: str = Field(
|
||||
None, description="The default system prompt to use for the query mode."
|
||||
)
|
||||
default_summarization_system_prompt: str = Field(
|
||||
None,
|
||||
description="The default system prompt to use for the summarization mode.",
|
||||
)
|
||||
delete_file_button_enabled: bool = Field(
|
||||
True, description="If the button to delete a file is enabled or not."
|
||||
)
|
||||
|
|
@ -388,6 +392,13 @@ class RagSettings(BaseModel):
|
|||
rerank: RerankSettings
|
||||
|
||||
|
||||
class SummarizeSettings(BaseModel):
|
||||
use_async: bool = Field(
|
||||
True,
|
||||
description="If set to True, the summarization will be done asynchronously.",
|
||||
)
|
||||
|
||||
|
||||
class ClickHouseSettings(BaseModel):
|
||||
host: str = Field(
|
||||
"localhost",
|
||||
|
|
@ -577,6 +588,7 @@ class Settings(BaseModel):
|
|||
vectorstore: VectorstoreSettings
|
||||
nodestore: NodeStoreSettings
|
||||
rag: RagSettings
|
||||
summarize: SummarizeSettings
|
||||
qdrant: QdrantSettings | None = None
|
||||
postgres: PostgresSettings | None = None
|
||||
clickhouse: ClickHouseSettings | None = None
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ import base64
|
|||
import logging
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
|
|
@ -11,6 +12,7 @@ from fastapi import FastAPI
|
|||
from gradio.themes.utils.colors import slate # type: ignore
|
||||
from injector import inject, singleton
|
||||
from llama_index.core.llms import ChatMessage, ChatResponse, MessageRole
|
||||
from llama_index.core.types import TokenGen
|
||||
from pydantic import BaseModel
|
||||
|
||||
from private_gpt.constants import PROJECT_ROOT_PATH
|
||||
|
|
@ -19,6 +21,7 @@ from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
|||
from private_gpt.server.chat.chat_service import ChatService, CompletionGen
|
||||
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
|
||||
from private_gpt.server.ingest.ingest_service import IngestService
|
||||
from private_gpt.server.recipes.summarize.summarize_service import SummarizeService
|
||||
from private_gpt.settings.settings import settings
|
||||
from private_gpt.ui.images import logo_svg
|
||||
|
||||
|
|
@ -32,7 +35,20 @@ UI_TAB_TITLE = "My Private GPT"
|
|||
|
||||
SOURCES_SEPARATOR = "<hr>Sources: \n"
|
||||
|
||||
MODES = ["Query Files", "Search Files", "LLM Chat (no context from files)"]
|
||||
|
||||
class Modes(str, Enum):
|
||||
RAG_MODE = "RAG"
|
||||
SEARCH_MODE = "Search"
|
||||
BASIC_CHAT_MODE = "Basic"
|
||||
SUMMARIZE_MODE = "Summarize"
|
||||
|
||||
|
||||
MODES: list[Modes] = [
|
||||
Modes.RAG_MODE,
|
||||
Modes.SEARCH_MODE,
|
||||
Modes.BASIC_CHAT_MODE,
|
||||
Modes.SUMMARIZE_MODE,
|
||||
]
|
||||
|
||||
|
||||
class Source(BaseModel):
|
||||
|
|
@ -70,10 +86,12 @@ class PrivateGptUi:
|
|||
ingest_service: IngestService,
|
||||
chat_service: ChatService,
|
||||
chunks_service: ChunksService,
|
||||
summarizeService: SummarizeService,
|
||||
) -> None:
|
||||
self._ingest_service = ingest_service
|
||||
self._chat_service = chat_service
|
||||
self._chunks_service = chunks_service
|
||||
self._summarize_service = summarizeService
|
||||
|
||||
# Cache the UI blocks
|
||||
self._ui_block = None
|
||||
|
|
@ -84,7 +102,9 @@ class PrivateGptUi:
|
|||
self.mode = MODES[0]
|
||||
self._system_prompt = self._get_default_system_prompt(self.mode)
|
||||
|
||||
def _chat(self, message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
|
||||
def _chat(
|
||||
self, message: str, history: list[list[str]], mode: Modes, *_: Any
|
||||
) -> Any:
|
||||
def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]:
|
||||
full_response: str = ""
|
||||
stream = completion_gen.response
|
||||
|
|
@ -112,6 +132,12 @@ class PrivateGptUi:
|
|||
full_response += sources_text
|
||||
yield full_response
|
||||
|
||||
def yield_tokens(token_gen: TokenGen) -> Iterable[str]:
|
||||
full_response: str = ""
|
||||
for token in token_gen:
|
||||
full_response += str(token)
|
||||
yield full_response
|
||||
|
||||
def build_history() -> list[ChatMessage]:
|
||||
history_messages: list[ChatMessage] = []
|
||||
|
||||
|
|
@ -143,8 +169,7 @@ class PrivateGptUi:
|
|||
),
|
||||
)
|
||||
match mode:
|
||||
case "Query Files":
|
||||
|
||||
case Modes.RAG_MODE:
|
||||
# Use only the selected file for the query
|
||||
context_filter = None
|
||||
if self._selected_filename is not None:
|
||||
|
|
@ -163,14 +188,14 @@ class PrivateGptUi:
|
|||
context_filter=context_filter,
|
||||
)
|
||||
yield from yield_deltas(query_stream)
|
||||
case "LLM Chat (no context from files)":
|
||||
case Modes.BASIC_CHAT_MODE:
|
||||
llm_stream = self._chat_service.stream_chat(
|
||||
messages=all_messages,
|
||||
use_context=False,
|
||||
)
|
||||
yield from yield_deltas(llm_stream)
|
||||
|
||||
case "Search Files":
|
||||
case Modes.SEARCH_MODE:
|
||||
response = self._chunks_service.retrieve_relevant(
|
||||
text=message, limit=4, prev_next_chunks=0
|
||||
)
|
||||
|
|
@ -183,37 +208,76 @@ class PrivateGptUi:
|
|||
f"{source.text}"
|
||||
for index, source in enumerate(sources, start=1)
|
||||
)
|
||||
case Modes.SUMMARIZE_MODE:
|
||||
# Summarize the given message, optionally using selected files
|
||||
context_filter = None
|
||||
if self._selected_filename:
|
||||
docs_ids = []
|
||||
for ingested_document in self._ingest_service.list_ingested():
|
||||
if (
|
||||
ingested_document.doc_metadata["file_name"]
|
||||
== self._selected_filename
|
||||
):
|
||||
docs_ids.append(ingested_document.doc_id)
|
||||
context_filter = ContextFilter(docs_ids=docs_ids)
|
||||
|
||||
summary_stream = self._summarize_service.stream_summarize(
|
||||
use_context=True,
|
||||
context_filter=context_filter,
|
||||
instructions=message,
|
||||
)
|
||||
yield from yield_tokens(summary_stream)
|
||||
|
||||
# On initialization and on mode change, this function set the system prompt
|
||||
# to the default prompt based on the mode (and user settings).
|
||||
@staticmethod
|
||||
def _get_default_system_prompt(mode: str) -> str:
|
||||
def _get_default_system_prompt(mode: Modes) -> str:
|
||||
p = ""
|
||||
match mode:
|
||||
# For query chat mode, obtain default system prompt from settings
|
||||
case "Query Files":
|
||||
case Modes.RAG_MODE:
|
||||
p = settings().ui.default_query_system_prompt
|
||||
# For chat mode, obtain default system prompt from settings
|
||||
case "LLM Chat (no context from files)":
|
||||
case Modes.BASIC_CHAT_MODE:
|
||||
p = settings().ui.default_chat_system_prompt
|
||||
# For summarization mode, obtain default system prompt from settings
|
||||
case Modes.SUMMARIZE_MODE:
|
||||
p = settings().ui.default_summarization_system_prompt
|
||||
# For any other mode, clear the system prompt
|
||||
case _:
|
||||
p = ""
|
||||
return p
|
||||
|
||||
@staticmethod
|
||||
def _get_default_mode_explanation(mode: Modes) -> str:
|
||||
match mode:
|
||||
case Modes.RAG_MODE:
|
||||
return "Get contextualized answers from selected files."
|
||||
case Modes.SEARCH_MODE:
|
||||
return "Find relevant chunks of text in selected files."
|
||||
case Modes.BASIC_CHAT_MODE:
|
||||
return "Chat with the LLM using its training data. Files are ignored."
|
||||
case Modes.SUMMARIZE_MODE:
|
||||
return "Generate a summary of the selected files. Prompt to customize the result."
|
||||
case _:
|
||||
return ""
|
||||
|
||||
def _set_system_prompt(self, system_prompt_input: str) -> None:
|
||||
logger.info(f"Setting system prompt to: {system_prompt_input}")
|
||||
self._system_prompt = system_prompt_input
|
||||
|
||||
def _set_current_mode(self, mode: str) -> Any:
|
||||
def _set_explanatation_mode(self, explanation_mode: str) -> None:
|
||||
self._explanation_mode = explanation_mode
|
||||
|
||||
def _set_current_mode(self, mode: Modes) -> Any:
|
||||
self.mode = mode
|
||||
self._set_system_prompt(self._get_default_system_prompt(mode))
|
||||
# Update placeholder and allow interaction if default system prompt is set
|
||||
if self._system_prompt:
|
||||
return gr.update(placeholder=self._system_prompt, interactive=True)
|
||||
# Update placeholder and disable interaction if no default system prompt is set
|
||||
else:
|
||||
return gr.update(placeholder=self._system_prompt, interactive=False)
|
||||
self._set_explanatation_mode(self._get_default_mode_explanation(mode))
|
||||
interactive = self._system_prompt is not None
|
||||
return [
|
||||
gr.update(placeholder=self._system_prompt, interactive=interactive),
|
||||
gr.update(value=self._explanation_mode),
|
||||
]
|
||||
|
||||
def _list_ingested_files(self) -> list[list[str]]:
|
||||
files = set()
|
||||
|
|
@ -326,10 +390,17 @@ class PrivateGptUi:
|
|||
|
||||
with gr.Row(equal_height=False):
|
||||
with gr.Column(scale=3):
|
||||
default_mode = MODES[0]
|
||||
mode = gr.Radio(
|
||||
MODES,
|
||||
[mode.value for mode in MODES],
|
||||
label="Mode",
|
||||
value="Query Files",
|
||||
value=default_mode,
|
||||
)
|
||||
explanation_mode = gr.Textbox(
|
||||
placeholder=self._get_default_mode_explanation(default_mode),
|
||||
show_label=False,
|
||||
max_lines=3,
|
||||
interactive=False,
|
||||
)
|
||||
upload_button = gr.components.UploadButton(
|
||||
"Upload File(s)",
|
||||
|
|
@ -413,9 +484,11 @@ class PrivateGptUi:
|
|||
interactive=True,
|
||||
render=False,
|
||||
)
|
||||
# When mode changes, set default system prompt
|
||||
# When mode changes, set default system prompt, and other stuffs
|
||||
mode.change(
|
||||
self._set_current_mode, inputs=mode, outputs=system_prompt_input
|
||||
self._set_current_mode,
|
||||
inputs=mode,
|
||||
outputs=[system_prompt_input, explanation_mode],
|
||||
)
|
||||
# On blur, set system prompt to use in queries
|
||||
system_prompt_input.blur(
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue