Working refactor. Dependency clean-up pending.

This commit is contained in:
imartinez 2024-02-28 18:45:54 +01:00
parent 12f3a39e8a
commit d0a7d991a2
20 changed files with 877 additions and 907 deletions

View file

@ -1,5 +1,5 @@
from fastapi import APIRouter, Depends, Request
from llama_index.llms import ChatMessage, MessageRole
from llama_index.core.llms import ChatMessage, MessageRole
from pydantic import BaseModel
from starlette.responses import StreamingResponse

View file

@ -1,14 +1,15 @@
from dataclasses import dataclass
from injector import inject, singleton
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
from llama_index.chat_engine import ContextChatEngine, SimpleChatEngine
from llama_index.chat_engine.types import (
from llama_index.core.chat_engine import ContextChatEngine, SimpleChatEngine
from llama_index.core.chat_engine.types import (
BaseChatEngine,
)
from llama_index.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.llms import ChatMessage, MessageRole
from llama_index.types import TokenGen
from llama_index.core.indices import VectorStoreIndex
from llama_index.core.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.storage import StorageContext
from llama_index.core.types import TokenGen
from pydantic import BaseModel
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
@ -75,20 +76,19 @@ class ChatService:
embedding_component: EmbeddingComponent,
node_store_component: NodeStoreComponent,
) -> None:
self.llm_service = llm_component
self.llm_component = llm_component
self.embedding_component = embedding_component
self.vector_store_component = vector_store_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
self.service_context = ServiceContext.from_defaults(
llm=llm_component.llm, embed_model=embedding_component.embedding_model
)
self.index = VectorStoreIndex.from_vector_store(
vector_store_component.vector_store,
storage_context=self.storage_context,
service_context=self.service_context,
llm=llm_component.llm,
embed_model=embedding_component.embedding_model,
show_progress=True,
)
@ -102,10 +102,17 @@ class ChatService:
vector_index_retriever = self.vector_store_component.get_retriever(
index=self.index, context_filter=context_filter
)
# TODO ContextChatEngine is still not migrated by LlamaIndex to accept
# llm directly, so we are passing legacy ServiceContext until it is fixed.
from llama_index.core import ServiceContext
return ContextChatEngine.from_defaults(
system_prompt=system_prompt,
retriever=vector_index_retriever,
service_context=self.service_context,
llm=self.llm_component.llm, # Takes no effect at the moment
service_context=ServiceContext.from_defaults(
llm=self.llm_component.llm,
embed_model=self.embedding_component.embedding_model,
),
node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window"),
],
@ -113,7 +120,7 @@ class ChatService:
else:
return SimpleChatEngine.from_defaults(
system_prompt=system_prompt,
service_context=self.service_context,
llm=self.llm_component.llm,
)
def stream_chat(

View file

@ -1,8 +1,9 @@
from typing import TYPE_CHECKING, Literal
from injector import inject, singleton
from llama_index import ServiceContext, StorageContext, VectorStoreIndex
from llama_index.schema import NodeWithScore
from llama_index.core.indices import VectorStoreIndex
from llama_index.core.schema import NodeWithScore
from llama_index.core.storage import StorageContext
from pydantic import BaseModel, Field
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
@ -15,7 +16,7 @@ from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.ingest.model import IngestedDoc
if TYPE_CHECKING:
from llama_index.schema import RelatedNodeInfo
from llama_index.core.schema import RelatedNodeInfo
class Chunk(BaseModel):
@ -63,14 +64,13 @@ class ChunksService:
node_store_component: NodeStoreComponent,
) -> None:
self.vector_store_component = vector_store_component
self.llm_component = llm_component
self.embedding_component = embedding_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
self.query_service_context = ServiceContext.from_defaults(
llm=llm_component.llm, embed_model=embedding_component.embedding_model
)
def _get_sibling_nodes_text(
self, node_with_score: NodeWithScore, related_number: int, forward: bool = True
@ -103,7 +103,8 @@ class ChunksService:
index = VectorStoreIndex.from_vector_store(
self.vector_store_component.vector_store,
storage_context=self.storage_context,
service_context=self.query_service_context,
llm=self.llm_component.llm,
embed_model=self.embedding_component.embedding_model,
show_progress=True,
)
vector_index_retriever = self.vector_store_component.get_retriever(

View file

@ -4,11 +4,8 @@ from pathlib import Path
from typing import AnyStr, BinaryIO
from injector import inject, singleton
from llama_index import (
ServiceContext,
StorageContext,
)
from llama_index.node_parser import SentenceWindowNodeParser
from llama_index.core.node_parser import SentenceWindowNodeParser
from llama_index.core.storage import StorageContext
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.ingest.ingest_component import get_ingestion_component
@ -40,17 +37,12 @@ class IngestService:
index_store=node_store_component.index_store,
)
node_parser = SentenceWindowNodeParser.from_defaults()
self.ingest_service_context = ServiceContext.from_defaults(
llm=self.llm_service.llm,
embed_model=embedding_component.embedding_model,
node_parser=node_parser,
# Embeddings done early in the pipeline of node transformations, right
# after the node parsing
transformations=[node_parser, embedding_component.embedding_model],
)
self.ingest_component = get_ingestion_component(
self.storage_context, self.ingest_service_context, settings=settings()
self.storage_context,
embed_model=embedding_component.embedding_model,
transformations=[node_parser, embedding_component.embedding_model],
settings=settings(),
)
def _ingest_data(self, file_name: str, file_data: AnyStr) -> list[IngestedDoc]:

View file

@ -1,6 +1,6 @@
from typing import Any, Literal
from llama_index import Document
from llama_index.core.schema import Document
from pydantic import BaseModel, Field