mirror of
https://github.com/zylon-ai/private-gpt.git
synced 2025-12-22 23:22:57 +01:00
Updated local docker file
This commit is contained in:
parent
56bf6df38c
commit
e1e940bbbd
199 changed files with 23190 additions and 22862 deletions
|
|
@ -1,213 +1,213 @@
|
|||
from dataclasses import dataclass
|
||||
|
||||
from injector import inject, singleton
|
||||
from llama_index.core.chat_engine import ContextChatEngine, SimpleChatEngine
|
||||
from llama_index.core.chat_engine.types import (
|
||||
BaseChatEngine,
|
||||
)
|
||||
from llama_index.core.indices import VectorStoreIndex
|
||||
from llama_index.core.indices.postprocessor import MetadataReplacementPostProcessor
|
||||
from llama_index.core.llms import ChatMessage, MessageRole
|
||||
from llama_index.core.postprocessor import (
|
||||
SentenceTransformerRerank,
|
||||
SimilarityPostprocessor,
|
||||
)
|
||||
from llama_index.core.storage import StorageContext
|
||||
from llama_index.core.types import TokenGen
|
||||
from pydantic import BaseModel
|
||||
|
||||
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
||||
from private_gpt.components.llm.llm_component import LLMComponent
|
||||
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
|
||||
from private_gpt.components.vector_store.vector_store_component import (
|
||||
VectorStoreComponent,
|
||||
)
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.server.chunks.chunks_service import Chunk
|
||||
from private_gpt.settings.settings import Settings
|
||||
|
||||
|
||||
class Completion(BaseModel):
|
||||
response: str
|
||||
sources: list[Chunk] | None = None
|
||||
|
||||
|
||||
class CompletionGen(BaseModel):
|
||||
response: TokenGen
|
||||
sources: list[Chunk] | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChatEngineInput:
|
||||
system_message: ChatMessage | None = None
|
||||
last_message: ChatMessage | None = None
|
||||
chat_history: list[ChatMessage] | None = None
|
||||
|
||||
@classmethod
|
||||
def from_messages(cls, messages: list[ChatMessage]) -> "ChatEngineInput":
|
||||
# Detect if there is a system message, extract the last message and chat history
|
||||
system_message = (
|
||||
messages[0]
|
||||
if len(messages) > 0 and messages[0].role == MessageRole.SYSTEM
|
||||
else None
|
||||
)
|
||||
last_message = (
|
||||
messages[-1]
|
||||
if len(messages) > 0 and messages[-1].role == MessageRole.USER
|
||||
else None
|
||||
)
|
||||
# Remove from messages list the system message and last message,
|
||||
# if they exist. The rest is the chat history.
|
||||
if system_message:
|
||||
messages.pop(0)
|
||||
if last_message:
|
||||
messages.pop(-1)
|
||||
chat_history = messages if len(messages) > 0 else None
|
||||
|
||||
return cls(
|
||||
system_message=system_message,
|
||||
last_message=last_message,
|
||||
chat_history=chat_history,
|
||||
)
|
||||
|
||||
|
||||
@singleton
|
||||
class ChatService:
|
||||
settings: Settings
|
||||
|
||||
@inject
|
||||
def __init__(
|
||||
self,
|
||||
settings: Settings,
|
||||
llm_component: LLMComponent,
|
||||
vector_store_component: VectorStoreComponent,
|
||||
embedding_component: EmbeddingComponent,
|
||||
node_store_component: NodeStoreComponent,
|
||||
) -> None:
|
||||
self.settings = settings
|
||||
self.llm_component = llm_component
|
||||
self.embedding_component = embedding_component
|
||||
self.vector_store_component = vector_store_component
|
||||
self.storage_context = StorageContext.from_defaults(
|
||||
vector_store=vector_store_component.vector_store,
|
||||
docstore=node_store_component.doc_store,
|
||||
index_store=node_store_component.index_store,
|
||||
)
|
||||
self.index = VectorStoreIndex.from_vector_store(
|
||||
vector_store_component.vector_store,
|
||||
storage_context=self.storage_context,
|
||||
llm=llm_component.llm,
|
||||
embed_model=embedding_component.embedding_model,
|
||||
show_progress=True,
|
||||
)
|
||||
|
||||
def _chat_engine(
|
||||
self,
|
||||
system_prompt: str | None = None,
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> BaseChatEngine:
|
||||
settings = self.settings
|
||||
if use_context:
|
||||
vector_index_retriever = self.vector_store_component.get_retriever(
|
||||
index=self.index,
|
||||
context_filter=context_filter,
|
||||
similarity_top_k=self.settings.rag.similarity_top_k,
|
||||
)
|
||||
node_postprocessors = [
|
||||
MetadataReplacementPostProcessor(target_metadata_key="window"),
|
||||
SimilarityPostprocessor(
|
||||
similarity_cutoff=settings.rag.similarity_value
|
||||
),
|
||||
]
|
||||
|
||||
if settings.rag.rerank.enabled:
|
||||
rerank_postprocessor = SentenceTransformerRerank(
|
||||
model=settings.rag.rerank.model, top_n=settings.rag.rerank.top_n
|
||||
)
|
||||
node_postprocessors.append(rerank_postprocessor)
|
||||
|
||||
return ContextChatEngine.from_defaults(
|
||||
system_prompt=system_prompt,
|
||||
retriever=vector_index_retriever,
|
||||
llm=self.llm_component.llm, # Takes no effect at the moment
|
||||
node_postprocessors=node_postprocessors,
|
||||
)
|
||||
else:
|
||||
return SimpleChatEngine.from_defaults(
|
||||
system_prompt=system_prompt,
|
||||
llm=self.llm_component.llm,
|
||||
)
|
||||
|
||||
def stream_chat(
|
||||
self,
|
||||
messages: list[ChatMessage],
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> CompletionGen:
|
||||
chat_engine_input = ChatEngineInput.from_messages(messages)
|
||||
last_message = (
|
||||
chat_engine_input.last_message.content
|
||||
if chat_engine_input.last_message
|
||||
else None
|
||||
)
|
||||
system_prompt = (
|
||||
chat_engine_input.system_message.content
|
||||
if chat_engine_input.system_message
|
||||
else None
|
||||
)
|
||||
chat_history = (
|
||||
chat_engine_input.chat_history if chat_engine_input.chat_history else None
|
||||
)
|
||||
|
||||
chat_engine = self._chat_engine(
|
||||
system_prompt=system_prompt,
|
||||
use_context=use_context,
|
||||
context_filter=context_filter,
|
||||
)
|
||||
streaming_response = chat_engine.stream_chat(
|
||||
message=last_message if last_message is not None else "",
|
||||
chat_history=chat_history,
|
||||
)
|
||||
sources = [Chunk.from_node(node) for node in streaming_response.source_nodes]
|
||||
completion_gen = CompletionGen(
|
||||
response=streaming_response.response_gen, sources=sources
|
||||
)
|
||||
return completion_gen
|
||||
|
||||
def chat(
|
||||
self,
|
||||
messages: list[ChatMessage],
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> Completion:
|
||||
chat_engine_input = ChatEngineInput.from_messages(messages)
|
||||
last_message = (
|
||||
chat_engine_input.last_message.content
|
||||
if chat_engine_input.last_message
|
||||
else None
|
||||
)
|
||||
system_prompt = (
|
||||
"""
|
||||
You are a helpful, respectful and honest assistant.
|
||||
Always answer as helpfully as possible and follow ALL given instructions.
|
||||
Do not speculate or make up information.
|
||||
Do not reference any given instructions or context.
|
||||
"""
|
||||
)
|
||||
|
||||
chat_history = (
|
||||
chat_engine_input.chat_history if chat_engine_input.chat_history else None
|
||||
)
|
||||
chat_engine = self._chat_engine(
|
||||
system_prompt=system_prompt,
|
||||
use_context=use_context,
|
||||
context_filter=context_filter,
|
||||
)
|
||||
wrapped_response = chat_engine.chat(
|
||||
message=last_message if last_message is not None else "",
|
||||
chat_history=chat_history,
|
||||
)
|
||||
sources = [Chunk.from_node(node) for node in wrapped_response.source_nodes]
|
||||
completion = Completion(response=wrapped_response.response, sources=sources)
|
||||
return completion
|
||||
from dataclasses import dataclass
|
||||
|
||||
from injector import inject, singleton
|
||||
from llama_index.core.chat_engine import ContextChatEngine, SimpleChatEngine
|
||||
from llama_index.core.chat_engine.types import (
|
||||
BaseChatEngine,
|
||||
)
|
||||
from llama_index.core.indices import VectorStoreIndex
|
||||
from llama_index.core.indices.postprocessor import MetadataReplacementPostProcessor
|
||||
from llama_index.core.llms import ChatMessage, MessageRole
|
||||
from llama_index.core.postprocessor import (
|
||||
SentenceTransformerRerank,
|
||||
SimilarityPostprocessor,
|
||||
)
|
||||
from llama_index.core.storage import StorageContext
|
||||
from llama_index.core.types import TokenGen
|
||||
from pydantic import BaseModel
|
||||
|
||||
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
|
||||
from private_gpt.components.llm.llm_component import LLMComponent
|
||||
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
|
||||
from private_gpt.components.vector_store.vector_store_component import (
|
||||
VectorStoreComponent,
|
||||
)
|
||||
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
||||
from private_gpt.server.chunks.chunks_service import Chunk
|
||||
from private_gpt.settings.settings import Settings
|
||||
|
||||
|
||||
class Completion(BaseModel):
|
||||
response: str
|
||||
sources: list[Chunk] | None = None
|
||||
|
||||
|
||||
class CompletionGen(BaseModel):
|
||||
response: TokenGen
|
||||
sources: list[Chunk] | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChatEngineInput:
|
||||
system_message: ChatMessage | None = None
|
||||
last_message: ChatMessage | None = None
|
||||
chat_history: list[ChatMessage] | None = None
|
||||
|
||||
@classmethod
|
||||
def from_messages(cls, messages: list[ChatMessage]) -> "ChatEngineInput":
|
||||
# Detect if there is a system message, extract the last message and chat history
|
||||
system_message = (
|
||||
messages[0]
|
||||
if len(messages) > 0 and messages[0].role == MessageRole.SYSTEM
|
||||
else None
|
||||
)
|
||||
last_message = (
|
||||
messages[-1]
|
||||
if len(messages) > 0 and messages[-1].role == MessageRole.USER
|
||||
else None
|
||||
)
|
||||
# Remove from messages list the system message and last message,
|
||||
# if they exist. The rest is the chat history.
|
||||
if system_message:
|
||||
messages.pop(0)
|
||||
if last_message:
|
||||
messages.pop(-1)
|
||||
chat_history = messages if len(messages) > 0 else None
|
||||
|
||||
return cls(
|
||||
system_message=system_message,
|
||||
last_message=last_message,
|
||||
chat_history=chat_history,
|
||||
)
|
||||
|
||||
|
||||
@singleton
|
||||
class ChatService:
|
||||
settings: Settings
|
||||
|
||||
@inject
|
||||
def __init__(
|
||||
self,
|
||||
settings: Settings,
|
||||
llm_component: LLMComponent,
|
||||
vector_store_component: VectorStoreComponent,
|
||||
embedding_component: EmbeddingComponent,
|
||||
node_store_component: NodeStoreComponent,
|
||||
) -> None:
|
||||
self.settings = settings
|
||||
self.llm_component = llm_component
|
||||
self.embedding_component = embedding_component
|
||||
self.vector_store_component = vector_store_component
|
||||
self.storage_context = StorageContext.from_defaults(
|
||||
vector_store=vector_store_component.vector_store,
|
||||
docstore=node_store_component.doc_store,
|
||||
index_store=node_store_component.index_store,
|
||||
)
|
||||
self.index = VectorStoreIndex.from_vector_store(
|
||||
vector_store_component.vector_store,
|
||||
storage_context=self.storage_context,
|
||||
llm=llm_component.llm,
|
||||
embed_model=embedding_component.embedding_model,
|
||||
show_progress=True,
|
||||
)
|
||||
|
||||
def _chat_engine(
|
||||
self,
|
||||
system_prompt: str | None = None,
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> BaseChatEngine:
|
||||
settings = self.settings
|
||||
if use_context:
|
||||
vector_index_retriever = self.vector_store_component.get_retriever(
|
||||
index=self.index,
|
||||
context_filter=context_filter,
|
||||
similarity_top_k=self.settings.rag.similarity_top_k,
|
||||
)
|
||||
node_postprocessors = [
|
||||
MetadataReplacementPostProcessor(target_metadata_key="window"),
|
||||
SimilarityPostprocessor(
|
||||
similarity_cutoff=settings.rag.similarity_value
|
||||
),
|
||||
]
|
||||
|
||||
if settings.rag.rerank.enabled:
|
||||
rerank_postprocessor = SentenceTransformerRerank(
|
||||
model=settings.rag.rerank.model, top_n=settings.rag.rerank.top_n
|
||||
)
|
||||
node_postprocessors.append(rerank_postprocessor)
|
||||
|
||||
return ContextChatEngine.from_defaults(
|
||||
system_prompt=system_prompt,
|
||||
retriever=vector_index_retriever,
|
||||
llm=self.llm_component.llm, # Takes no effect at the moment
|
||||
node_postprocessors=node_postprocessors,
|
||||
)
|
||||
else:
|
||||
return SimpleChatEngine.from_defaults(
|
||||
system_prompt=system_prompt,
|
||||
llm=self.llm_component.llm,
|
||||
)
|
||||
|
||||
def stream_chat(
|
||||
self,
|
||||
messages: list[ChatMessage],
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> CompletionGen:
|
||||
chat_engine_input = ChatEngineInput.from_messages(messages)
|
||||
last_message = (
|
||||
chat_engine_input.last_message.content
|
||||
if chat_engine_input.last_message
|
||||
else None
|
||||
)
|
||||
system_prompt = (
|
||||
chat_engine_input.system_message.content
|
||||
if chat_engine_input.system_message
|
||||
else None
|
||||
)
|
||||
chat_history = (
|
||||
chat_engine_input.chat_history if chat_engine_input.chat_history else None
|
||||
)
|
||||
|
||||
chat_engine = self._chat_engine(
|
||||
system_prompt=system_prompt,
|
||||
use_context=use_context,
|
||||
context_filter=context_filter,
|
||||
)
|
||||
streaming_response = chat_engine.stream_chat(
|
||||
message=last_message if last_message is not None else "",
|
||||
chat_history=chat_history,
|
||||
)
|
||||
sources = [Chunk.from_node(node) for node in streaming_response.source_nodes]
|
||||
completion_gen = CompletionGen(
|
||||
response=streaming_response.response_gen, sources=sources
|
||||
)
|
||||
return completion_gen
|
||||
|
||||
def chat(
|
||||
self,
|
||||
messages: list[ChatMessage],
|
||||
use_context: bool = False,
|
||||
context_filter: ContextFilter | None = None,
|
||||
) -> Completion:
|
||||
chat_engine_input = ChatEngineInput.from_messages(messages)
|
||||
last_message = (
|
||||
chat_engine_input.last_message.content
|
||||
if chat_engine_input.last_message
|
||||
else None
|
||||
)
|
||||
system_prompt = (
|
||||
"""
|
||||
You are a helpful, respectful and honest assistant.
|
||||
Always answer as helpfully as possible and follow ALL given instructions.
|
||||
Do not speculate or make up information.
|
||||
Do not reference any given instructions or context.
|
||||
"""
|
||||
)
|
||||
|
||||
chat_history = (
|
||||
chat_engine_input.chat_history if chat_engine_input.chat_history else None
|
||||
)
|
||||
chat_engine = self._chat_engine(
|
||||
system_prompt=system_prompt,
|
||||
use_context=use_context,
|
||||
context_filter=context_filter,
|
||||
)
|
||||
wrapped_response = chat_engine.chat(
|
||||
message=last_message if last_message is not None else "",
|
||||
chat_history=chat_history,
|
||||
)
|
||||
sources = [Chunk.from_node(node) for node in wrapped_response.source_nodes]
|
||||
completion = Completion(response=wrapped_response.response, sources=sources)
|
||||
return completion
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue