Delete old docs (#1384)

This commit is contained in:
Iván Martínez 2023-12-08 22:39:23 +01:00 committed by GitHub
parent 9302620eac
commit f235c50be9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 35 additions and 1636 deletions

View file

@ -1,13 +1,10 @@
"""FastAPI app creation, logger configuration and main API routes."""
import logging
from typing import Any
from fastapi import Depends, FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.utils import get_openapi
from injector import Injector
from private_gpt.paths import docs_path
from private_gpt.server.chat.chat_router import chat_router
from private_gpt.server.chunks.chunks_router import chunks_router
from private_gpt.server.completions.completions_router import completions_router
@ -22,107 +19,35 @@ logger = logging.getLogger(__name__)
def create_app(root_injector: Injector) -> FastAPI:
# Start the API
with open(docs_path / "description.md") as description_file:
description = description_file.read()
async def bind_injector_to_request(request: Request) -> None:
request.state.injector = root_injector
tags_metadata = [
{
"name": "Ingestion",
"description": "High-level APIs covering document ingestion -internally "
"managing document parsing, splitting,"
"metadata extraction, embedding generation and storage- and ingested "
"documents CRUD."
"Each ingested document is identified by an ID that can be used to filter the "
"context"
"used in *Contextual Completions* and *Context Chunks* APIs.",
},
{
"name": "Contextual Completions",
"description": "High-level APIs covering contextual Chat and Completions. They "
"follow OpenAI's format, extending it to "
"allow using the context coming from ingested documents to create the "
"response. Internally"
"manage context retrieval, prompt engineering and the response generation.",
},
{
"name": "Context Chunks",
"description": "Low-level API that given a query return relevant chunks of "
"text coming from the ingested"
"documents.",
},
{
"name": "Embeddings",
"description": "Low-level API to obtain the vector representation of a given "
"text, using an Embeddings model."
"Follows OpenAI's embeddings API format.",
},
{
"name": "Health",
"description": "Simple health API to make sure the server is up and running.",
},
]
app = FastAPI(dependencies=[Depends(bind_injector_to_request)])
async def bind_injector_to_request(request: Request) -> None:
request.state.injector = root_injector
app.include_router(completions_router)
app.include_router(chat_router)
app.include_router(chunks_router)
app.include_router(ingest_router)
app.include_router(embeddings_router)
app.include_router(health_router)
app = FastAPI(dependencies=[Depends(bind_injector_to_request)])
settings = root_injector.get(Settings)
if settings.server.cors.enabled:
logger.debug("Setting up CORS middleware")
app.add_middleware(
CORSMiddleware,
allow_credentials=settings.server.cors.allow_credentials,
allow_origins=settings.server.cors.allow_origins,
allow_origin_regex=settings.server.cors.allow_origin_regex,
allow_methods=settings.server.cors.allow_methods,
allow_headers=settings.server.cors.allow_headers,
)
def custom_openapi() -> dict[str, Any]:
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title="PrivateGPT",
description=description,
version="0.1.0",
summary="PrivateGPT is a production-ready AI project that allows you to "
"ask questions to your documents using the power of Large Language "
"Models (LLMs), even in scenarios without Internet connection. "
"100% private, no data leaves your execution environment at any point.",
contact={
"url": "https://github.com/imartinez/privateGPT",
},
license_info={
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
routes=app.routes,
tags=tags_metadata,
)
openapi_schema["info"]["x-logo"] = {
"url": "https://lh3.googleusercontent.com/drive-viewer"
"/AK7aPaD_iNlMoTquOBsw4boh4tIYxyEuhz6EtEs8nzq3yNkNAK00xGj"
"E1KUCmPJSk3TYOjcs6tReG6w_cLu1S7L_gPgT9z52iw=s2560"
}
if settings.ui.enabled:
logger.debug("Importing the UI module")
from private_gpt.ui.ui import PrivateGptUi
app.openapi_schema = openapi_schema
return app.openapi_schema
ui = root_injector.get(PrivateGptUi)
ui.mount_in_app(app, settings.ui.path)
app.openapi = custom_openapi # type: ignore[method-assign]
app.include_router(completions_router)
app.include_router(chat_router)
app.include_router(chunks_router)
app.include_router(ingest_router)
app.include_router(embeddings_router)
app.include_router(health_router)
settings = root_injector.get(Settings)
if settings.server.cors.enabled:
logger.debug("Setting up CORS middleware")
app.add_middleware(
CORSMiddleware,
allow_credentials=settings.server.cors.allow_credentials,
allow_origins=settings.server.cors.allow_origins,
allow_origin_regex=settings.server.cors.allow_origin_regex,
allow_methods=settings.server.cors.allow_methods,
allow_headers=settings.server.cors.allow_headers,
)
if settings.ui.enabled:
logger.debug("Importing the UI module")
from private_gpt.ui.ui import PrivateGptUi
ui = root_injector.get(PrivateGptUi)
ui.mount_in_app(app, settings.ui.path)
return app
return app