Compare commits

..

12 commits
main ... 0.1.0

Author SHA1 Message Date
Javier Martinez
ca1a5cb56e
try to make ifs 2024-07-18 12:12:04 +02:00
Javier Martinez
615320a4df
chore : setup buildx 2024-07-18 11:58:32 +02:00
Javier Martinez
afddca5742
... 2024-07-18 11:52:12 +02:00
Javier Martinez
c66ef93873
Merge branch 'docs/collaboration-model' into j_main 2024-07-18 11:50:48 +02:00
Javier Martinez
ae4592c5aa
Merge branch 'chore/colaboration-model' into j_main 2024-07-18 11:49:59 +02:00
Javier Martinez
92b39a4e9d
chore: require more information in bugs 2024-07-18 11:43:23 +02:00
Javier Martinez
24a9b119a2
chore: more docker tags 2024-07-17 17:10:12 +02:00
Javier Martinez
51ea8407c3
chore: remove old docker action 2024-07-17 17:10:02 +02:00
Javier Martinez
b11524ceba
chore: add docker image to docker hub 2024-07-17 16:24:18 +02:00
Javier Martinez
a45c07d2ad
chore: re-enable pre-commit 2024-07-17 14:13:52 +02:00
Javier Martinez
bdd0bb7425
chore: add issue templates 2024-07-17 13:38:45 +02:00
Javier Martinez
22748bff9a
chore: add pull request template 2024-07-17 13:38:37 +02:00
59 changed files with 3577 additions and 5323 deletions

View file

@ -1,16 +0,0 @@
http:
services:
ollama:
loadBalancer:
healthCheck:
interval: 5s
path: /
servers:
- url: http://ollama-cpu:11434
- url: http://ollama-cuda:11434
- url: http://host.docker.internal:11434
routers:
ollama-router:
rule: "PathPrefix(`/`)"
service: ollama

View file

@ -1,19 +0,0 @@
{
"$schema": "https://raw.githubusercontent.com/googleapis/release-please/main/schemas/config.json",
"release-type": "simple",
"version-file": "version.txt",
"extra-files": [
{
"type": "toml",
"path": "pyproject.toml",
"jsonpath": "$.tool.poetry.version"
},
{
"type": "generic",
"path": "docker-compose.yaml"
}
],
"packages": {
".": {}
}
}

View file

@ -1,3 +0,0 @@
{
".": "0.6.2"
}

View file

@ -8,7 +8,7 @@ inputs:
poetry_version:
required: true
type: string
default: "1.8.3"
default: "1.5.1"
runs:
using: composite

View file

@ -7,9 +7,8 @@ on:
env:
REGISTRY: docker.io
IMAGE_NAME: zylonai/private-gpt
IMAGE_NAME: ${{ github.repository }}
platforms: linux/amd64,linux/arm64
DEFAULT_TYPE: "ollama"
jobs:
build-and-push-image:
@ -17,7 +16,7 @@ jobs:
strategy:
matrix:
type: [ llamacpp-cpu, ollama ]
type: [ local, external ]
permissions:
contents: read
@ -27,16 +26,6 @@ jobs:
version: ${{ steps.version.outputs.version }}
steps:
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
tool-cache: false
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: false
swap-storage: true
- name: Checkout repository
uses: actions/checkout@v4
@ -59,14 +48,15 @@ jobs:
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
tags: |
type=semver,pattern={{version}},enable=${{ matrix.type == env.DEFAULT_TYPE }}
{{ if eq ${{matrix.type}} "external" }}latest{{ end }}
{{ if eq ${{matrix.type}} "external" }}type=semver,pattern={{version}}{{ end }}
type=semver,pattern={{version}}-${{ matrix.type }}
type=semver,pattern={{major}}.{{minor}},enable=${{ matrix.type == env.DEFAULT_TYPE }}
{{ if eq ${{matrix.type}} "external" }}type=semver,pattern={{major}}.{{minor}}{{ end }}
type=semver,pattern={{major}}.{{minor}}-${{ matrix.type }}
type=raw,value=latest,enable=${{ matrix.type == env.DEFAULT_TYPE }}
{{ if eq ${{matrix.type}} "external" }}type=semver,pattern={{major}}{{ end }}
type=semver,pattern={{major}}-${{ matrix.type }}
type=sha
flavor: |
latest=false
- name: Build and push Docker image
uses: docker/build-push-action@v6

View file

@ -13,8 +13,7 @@ jobs:
release-please:
runs-on: ubuntu-latest
steps:
- uses: google-github-actions/release-please-action@v4
id: release
- uses: google-github-actions/release-please-action@v3
with:
config-file: .github/release_please/.release-please-config.json
manifest-file: .github/release_please/.release-please-manifest.json
release-type: simple
version-file: version.txt

View file

@ -14,7 +14,7 @@ jobs:
setup:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: ./.github/workflows/actions/install_dependencies
checks:
@ -28,7 +28,7 @@ jobs:
- ruff
- mypy
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: ./.github/workflows/actions/install_dependencies
- name: run ${{ matrix.quality-command }}
run: make ${{ matrix.quality-command }}
@ -38,7 +38,7 @@ jobs:
runs-on: ubuntu-latest
name: test
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: ./.github/workflows/actions/install_dependencies
- name: run test
run: make test-coverage

View file

@ -17,13 +17,13 @@ repos:
hooks:
- id: black
name: Formatting (black)
entry: black
entry: make format
language: system
types: [python]
stages: [commit]
- id: ruff
name: Linter (ruff)
entry: ruff
entry: make lint
language: system
types: [python]
stages: [commit]

View file

@ -1,63 +1,5 @@
# Changelog
## [0.6.2](https://github.com/zylon-ai/private-gpt/compare/v0.6.1...v0.6.2) (2024-08-08)
### Bug Fixes
* add numpy issue to troubleshooting ([#2048](https://github.com/zylon-ai/private-gpt/issues/2048)) ([4ca6d0c](https://github.com/zylon-ai/private-gpt/commit/4ca6d0cb556be7a598f7d3e3b00d2a29214ee1e8))
* auto-update version ([#2052](https://github.com/zylon-ai/private-gpt/issues/2052)) ([7fefe40](https://github.com/zylon-ai/private-gpt/commit/7fefe408b4267684c6e3c1a43c5dc2b73ec61fe4))
* publish image name ([#2043](https://github.com/zylon-ai/private-gpt/issues/2043)) ([b1acf9d](https://github.com/zylon-ai/private-gpt/commit/b1acf9dc2cbca2047cd0087f13254ff5cda6e570))
* update matplotlib to 3.9.1-post1 to fix win install ([b16abbe](https://github.com/zylon-ai/private-gpt/commit/b16abbefe49527ac038d235659854b98345d5387))
## [0.6.1](https://github.com/zylon-ai/private-gpt/compare/v0.6.0...v0.6.1) (2024-08-05)
### Bug Fixes
* add built image from DockerHub ([#2042](https://github.com/zylon-ai/private-gpt/issues/2042)) ([f09f6dd](https://github.com/zylon-ai/private-gpt/commit/f09f6dd2553077d4566dbe6b48a450e05c2f049e))
* Adding azopenai to model list ([#2035](https://github.com/zylon-ai/private-gpt/issues/2035)) ([1c665f7](https://github.com/zylon-ai/private-gpt/commit/1c665f7900658144f62814b51f6e3434a6d7377f))
* **deploy:** generate docker release when new version is released ([#2038](https://github.com/zylon-ai/private-gpt/issues/2038)) ([1d4c14d](https://github.com/zylon-ai/private-gpt/commit/1d4c14d7a3c383c874b323d934be01afbaca899e))
* **deploy:** improve Docker-Compose and quickstart on Docker ([#2037](https://github.com/zylon-ai/private-gpt/issues/2037)) ([dae0727](https://github.com/zylon-ai/private-gpt/commit/dae0727a1b4abd35d2b0851fe30e0a4ed67e0fbb))
## [0.6.0](https://github.com/zylon-ai/private-gpt/compare/v0.5.0...v0.6.0) (2024-08-02)
### Features
* bump dependencies ([#1987](https://github.com/zylon-ai/private-gpt/issues/1987)) ([b687dc8](https://github.com/zylon-ai/private-gpt/commit/b687dc852413404c52d26dcb94536351a63b169d))
* **docs:** add privategpt-ts sdk ([#1924](https://github.com/zylon-ai/private-gpt/issues/1924)) ([d13029a](https://github.com/zylon-ai/private-gpt/commit/d13029a046f6e19e8ee65bef3acd96365c738df2))
* **docs:** Fix setup docu ([#1926](https://github.com/zylon-ai/private-gpt/issues/1926)) ([067a5f1](https://github.com/zylon-ai/private-gpt/commit/067a5f144ca6e605c99d7dbe9ca7d8207ac8808d))
* **docs:** update doc for ipex-llm ([#1968](https://github.com/zylon-ai/private-gpt/issues/1968)) ([19a7c06](https://github.com/zylon-ai/private-gpt/commit/19a7c065ef7f42b37f289dd28ac945f7afc0e73a))
* **docs:** update documentation and fix preview-docs ([#2000](https://github.com/zylon-ai/private-gpt/issues/2000)) ([4523a30](https://github.com/zylon-ai/private-gpt/commit/4523a30c8f004aac7a7ae224671e2c45ec0cb973))
* **llm:** add progress bar when ollama is pulling models ([#2031](https://github.com/zylon-ai/private-gpt/issues/2031)) ([cf61bf7](https://github.com/zylon-ai/private-gpt/commit/cf61bf780f8d122e4057d002abf03563bb45614a))
* **llm:** autopull ollama models ([#2019](https://github.com/zylon-ai/private-gpt/issues/2019)) ([20bad17](https://github.com/zylon-ai/private-gpt/commit/20bad17c9857809158e689e9671402136c1e3d84))
* **llm:** Support for Google Gemini LLMs and Embeddings ([#1965](https://github.com/zylon-ai/private-gpt/issues/1965)) ([fc13368](https://github.com/zylon-ai/private-gpt/commit/fc13368bc72d1f4c27644677431420ed77731c03))
* make llama3.1 as default ([#2022](https://github.com/zylon-ai/private-gpt/issues/2022)) ([9027d69](https://github.com/zylon-ai/private-gpt/commit/9027d695c11fbb01e62424b855665de71d513417))
* prompt_style applied to all LLMs + extra LLM params. ([#1835](https://github.com/zylon-ai/private-gpt/issues/1835)) ([e21bf20](https://github.com/zylon-ai/private-gpt/commit/e21bf20c10938b24711d9f2c765997f44d7e02a9))
* **recipe:** add our first recipe `Summarize` ([#2028](https://github.com/zylon-ai/private-gpt/issues/2028)) ([8119842](https://github.com/zylon-ai/private-gpt/commit/8119842ae6f1f5ecfaf42b06fa0d1ffec675def4))
* **vectordb:** Milvus vector db Integration ([#1996](https://github.com/zylon-ai/private-gpt/issues/1996)) ([43cc31f](https://github.com/zylon-ai/private-gpt/commit/43cc31f74015f8d8fcbf7a8ea7d7d9ecc66cf8c9))
* **vectorstore:** Add clickhouse support as vectore store ([#1883](https://github.com/zylon-ai/private-gpt/issues/1883)) ([2612928](https://github.com/zylon-ai/private-gpt/commit/26129288394c7483e6fc0496a11dc35679528cc1))
### Bug Fixes
* "no such group" error in Dockerfile, added docx2txt and cryptography deps ([#1841](https://github.com/zylon-ai/private-gpt/issues/1841)) ([947e737](https://github.com/zylon-ai/private-gpt/commit/947e737f300adf621d2261d527192f36f3387f8e))
* **config:** make tokenizer optional and include a troubleshooting doc ([#1998](https://github.com/zylon-ai/private-gpt/issues/1998)) ([01b7ccd](https://github.com/zylon-ai/private-gpt/commit/01b7ccd0648be032846647c9a184925d3682f612))
* **docs:** Fix concepts.mdx referencing to installation page ([#1779](https://github.com/zylon-ai/private-gpt/issues/1779)) ([dde0224](https://github.com/zylon-ai/private-gpt/commit/dde02245bcd51a7ede7b6789c82ae217cac53d92))
* **docs:** Update installation.mdx ([#1866](https://github.com/zylon-ai/private-gpt/issues/1866)) ([c1802e7](https://github.com/zylon-ai/private-gpt/commit/c1802e7cf0e56a2603213ec3b6a4af8fadb8a17a))
* ffmpy dependency ([#2020](https://github.com/zylon-ai/private-gpt/issues/2020)) ([dabf556](https://github.com/zylon-ai/private-gpt/commit/dabf556dae9cb00fe0262270e5138d982585682e))
* light mode ([#2025](https://github.com/zylon-ai/private-gpt/issues/2025)) ([1020cd5](https://github.com/zylon-ai/private-gpt/commit/1020cd53288af71a17882781f392512568f1b846))
* **LLM:** mistral ignoring assistant messages ([#1954](https://github.com/zylon-ai/private-gpt/issues/1954)) ([c7212ac](https://github.com/zylon-ai/private-gpt/commit/c7212ac7cc891f9e3c713cc206ae9807c5dfdeb6))
* **llm:** special tokens and leading space ([#1831](https://github.com/zylon-ai/private-gpt/issues/1831)) ([347be64](https://github.com/zylon-ai/private-gpt/commit/347be643f7929c56382a77c3f45f0867605e0e0a))
* make embedding_api_base match api_base when on docker ([#1859](https://github.com/zylon-ai/private-gpt/issues/1859)) ([2a432bf](https://github.com/zylon-ai/private-gpt/commit/2a432bf9c5582a94eb4052b1e80cabdb118d298e))
* nomic embeddings ([#2030](https://github.com/zylon-ai/private-gpt/issues/2030)) ([5465958](https://github.com/zylon-ai/private-gpt/commit/54659588b5b109a3dd17cca835e275240464d275))
* prevent to ingest local files (by default) ([#2010](https://github.com/zylon-ai/private-gpt/issues/2010)) ([e54a8fe](https://github.com/zylon-ai/private-gpt/commit/e54a8fe0433252808d0a60f6a08a43c9f5a42f3b))
* Replacing unsafe `eval()` with `json.loads()` ([#1890](https://github.com/zylon-ai/private-gpt/issues/1890)) ([9d0d614](https://github.com/zylon-ai/private-gpt/commit/9d0d614706581a8bfa57db45f62f84ab23d26f15))
* **settings:** enable cors by default so it will work when using ts sdk (spa) ([#1925](https://github.com/zylon-ai/private-gpt/issues/1925)) ([966af47](https://github.com/zylon-ai/private-gpt/commit/966af4771dbe5cf3fdf554b5fdf8f732407859c4))
* **ui:** gradio bug fixes ([#2021](https://github.com/zylon-ai/private-gpt/issues/2021)) ([d4375d0](https://github.com/zylon-ai/private-gpt/commit/d4375d078f18ba53562fd71651159f997fff865f))
* unify embedding models ([#2027](https://github.com/zylon-ai/private-gpt/issues/2027)) ([40638a1](https://github.com/zylon-ai/private-gpt/commit/40638a18a5713d60fec8fe52796dcce66d88258c))
## [0.5.0](https://github.com/zylon-ai/private-gpt/compare/v0.4.0...v0.5.0) (2024-04-02)

40
Dockerfile.external Normal file
View file

@ -0,0 +1,40 @@
FROM python:3.11.6-slim-bookworm as base
# Install poetry
RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry
ENV PATH="/root/.local/bin:$PATH"
ENV PATH=".venv/bin/:$PATH"
# https://python-poetry.org/docs/configuration/#virtualenvsin-project
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
FROM base as dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
RUN poetry install --extras "ui vector-stores-qdrant llms-ollama embeddings-ollama"
FROM base as app
ENV PYTHONUNBUFFERED=1
ENV PORT=8080
EXPOSE 8080
# Prepare a non-root user
RUN adduser --system worker
WORKDIR /home/worker/app
RUN mkdir local_data; chown worker local_data
RUN mkdir models; chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker fern/ fern
COPY --chown=worker *.yaml *.md ./
COPY --chown=worker scripts/ scripts
ENV PYTHONPATH="$PYTHONPATH:/private_gpt/"
USER worker
ENTRYPOINT python -m private_gpt

View file

@ -1,62 +0,0 @@
### IMPORTANT, THIS IMAGE CAN ONLY BE RUN IN LINUX DOCKER
### You will run into a segfault in mac
FROM python:3.11.6-slim-bookworm AS base
# Install poetry
RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry==1.8.3
ENV PATH="/root/.local/bin:$PATH"
ENV PATH=".venv/bin/:$PATH"
# Dependencies to build llama-cpp
RUN apt update && apt install -y \
libopenblas-dev\
ninja-build\
build-essential\
pkg-config\
wget
# https://python-poetry.org/docs/configuration/#virtualenvsin-project
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
FROM base AS dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
ARG POETRY_EXTRAS="ui embeddings-huggingface llms-llama-cpp vector-stores-qdrant"
RUN poetry install --no-root --extras "${POETRY_EXTRAS}"
FROM base AS app
ENV PYTHONUNBUFFERED=1
ENV PORT=8080
ENV APP_ENV=prod
ENV PYTHONPATH="$PYTHONPATH:/home/worker/app/private_gpt/"
EXPOSE 8080
# Prepare a non-root user
# More info about how to configure UIDs and GIDs in Docker:
# https://github.com/systemd/systemd/blob/main/docs/UIDS-GIDS.md
# Define the User ID (UID) for the non-root user
# UID 100 is chosen to avoid conflicts with existing system users
ARG UID=100
# Define the Group ID (GID) for the non-root user
# GID 65534 is often used for the 'nogroup' or 'nobody' group
ARG GID=65534
RUN adduser --system --gid ${GID} --uid ${UID} --home /home/worker worker
WORKDIR /home/worker/app
RUN chown worker /home/worker/app
RUN mkdir local_data && chown worker local_data
RUN mkdir models && chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker *.yaml ./
COPY --chown=worker scripts/ scripts
USER worker
ENTRYPOINT python -m private_gpt

51
Dockerfile.local Normal file
View file

@ -0,0 +1,51 @@
### IMPORTANT, THIS IMAGE CAN ONLY BE RUN IN LINUX DOCKER
### You will run into a segfault in mac
FROM python:3.11.6-slim-bookworm as base
# Install poetry
RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry
ENV PATH="/root/.local/bin:$PATH"
ENV PATH=".venv/bin/:$PATH"
# Dependencies to build llama-cpp
RUN apt update && apt install -y \
libopenblas-dev\
ninja-build\
build-essential\
pkg-config\
wget
# https://python-poetry.org/docs/configuration/#virtualenvsin-project
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
FROM base as dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
RUN poetry install --extras "ui embeddings-huggingface llms-llama-cpp vector-stores-qdrant"
FROM base as app
ENV PYTHONUNBUFFERED=1
ENV PORT=8080
EXPOSE 8080
# Prepare a non-root user
RUN adduser --group worker
RUN adduser --system --ingroup worker worker
WORKDIR /home/worker/app
RUN mkdir local_data; chown worker local_data
RUN mkdir models; chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker fern/ fern
COPY --chown=worker *.yaml *.md ./
COPY --chown=worker scripts/ scripts
ENV PYTHONPATH="$PYTHONPATH:/private_gpt/"
USER worker
ENTRYPOINT python -m private_gpt

View file

@ -1,51 +0,0 @@
FROM python:3.11.6-slim-bookworm AS base
# Install poetry
RUN pip install pipx
RUN python3 -m pipx ensurepath
RUN pipx install poetry==1.8.3
ENV PATH="/root/.local/bin:$PATH"
ENV PATH=".venv/bin/:$PATH"
# https://python-poetry.org/docs/configuration/#virtualenvsin-project
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
FROM base AS dependencies
WORKDIR /home/worker/app
COPY pyproject.toml poetry.lock ./
ARG POETRY_EXTRAS="ui vector-stores-qdrant llms-ollama embeddings-ollama"
RUN poetry install --no-root --extras "${POETRY_EXTRAS}"
FROM base AS app
ENV PYTHONUNBUFFERED=1
ENV PORT=8080
ENV APP_ENV=prod
ENV PYTHONPATH="$PYTHONPATH:/home/worker/app/private_gpt/"
EXPOSE 8080
# Prepare a non-root user
# More info about how to configure UIDs and GIDs in Docker:
# https://github.com/systemd/systemd/blob/main/docs/UIDS-GIDS.md
# Define the User ID (UID) for the non-root user
# UID 100 is chosen to avoid conflicts with existing system users
ARG UID=100
# Define the Group ID (GID) for the non-root user
# GID 65534 is often used for the 'nogroup' or 'nobody' group
ARG GID=65534
RUN adduser --system --gid ${GID} --uid ${UID} --home /home/worker worker
WORKDIR /home/worker/app
RUN chown worker /home/worker/app
RUN mkdir local_data && chown worker local_data
RUN mkdir models && chown worker models
COPY --chown=worker --from=dependencies /home/worker/app/.venv/ .venv
COPY --chown=worker private_gpt/ private_gpt
COPY --chown=worker *.yaml .
COPY --chown=worker scripts/ scripts
USER worker
ENTRYPOINT python -m private_gpt

View file

@ -12,20 +12,23 @@ test-coverage:
PYTHONPATH=. poetry run pytest tests --cov private_gpt --cov-report term --cov-report=html --cov-report xml --junit-xml=tests-results.xml
black:
poetry run black . --check
PYTHONPATH=. poetry run black . --check
ruff:
poetry run ruff check private_gpt tests
PYTHONPATH=. poetry run ruff check private_gpt tests
format:
poetry run black .
poetry run ruff check private_gpt tests --fix
PYTHONPATH=. poetry run black .
lint:
PYTHONPATH=. poetry run ruff check private_gpt tests --fix
mypy:
poetry run mypy private_gpt
PYTHONPATH=. poetry run mypy private_gpt
check:
make format
make lint
make mypy
########################################################################################################################

View file

@ -1,24 +1,22 @@
# PrivateGPT
<a href="https://trendshift.io/repositories/2601" target="_blank"><img src="https://trendshift.io/api/badge/repositories/2601" alt="imartinez%2FprivateGPT | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
# 🔒 PrivateGPT 📑
[![Tests](https://github.com/zylon-ai/private-gpt/actions/workflows/tests.yml/badge.svg)](https://github.com/zylon-ai/private-gpt/actions/workflows/tests.yml?query=branch%3Amain)
[![Website](https://img.shields.io/website?up_message=check%20it&down_message=down&url=https%3A%2F%2Fdocs.privategpt.dev%2F&label=Documentation)](https://docs.privategpt.dev/)
[![Discord](https://img.shields.io/discord/1164200432894234644?logo=discord&label=PrivateGPT)](https://discord.gg/bK6mRVpErU)
[![X (formerly Twitter) Follow](https://img.shields.io/twitter/follow/ZylonPrivateGPT)](https://twitter.com/ZylonPrivateGPT)
> Install & usage docs: https://docs.privategpt.dev/
>
> Join the community: [Twitter](https://twitter.com/ZylonPrivateGPT) & [Discord](https://discord.gg/bK6mRVpErU)
![Gradio UI](/fern/docs/assets/ui.png?raw=true)
PrivateGPT is a production-ready AI project that allows you to ask questions about your documents using the power
of Large Language Models (LLMs), even in scenarios without an Internet connection. 100% private, no data leaves your
execution environment at any point.
>[!TIP]
> If you are looking for an **enterprise-ready, fully private AI workspace**
> check out [Zylon's website](https://zylon.ai) or [request a demo](https://cal.com/zylon/demo?source=pgpt-readme).
> Crafted by the team behind PrivateGPT, Zylon is a best-in-class AI collaborative
> workspace that can be easily deployed on-premise (data center, bare metal...) or in your private cloud (AWS, GCP, Azure...).
The project provides an API offering all the primitives required to build private, context-aware AI applications.
It follows and extends the [OpenAI API standard](https://openai.com/blog/openai-api),
and supports both normal and streaming responses.
@ -40,10 +38,13 @@ In addition to this, a working [Gradio UI](https://www.gradio.app/)
client is provided to test the API, together with a set of useful tools such as bulk model
download script, ingestion script, documents folder watch, etc.
> 👂 **Need help applying PrivateGPT to your specific use case?**
> [Let us know more about it](https://forms.gle/4cSDmH13RZBHV9at7)
> and we'll try to help! We are refining PrivateGPT through your feedback.
## 🎞️ Overview
>[!WARNING]
> This README is not updated as frequently as the [documentation](https://docs.privategpt.dev/).
> Please check it out for the latest updates!
DISCLAIMER: This README is not updated as frequently as the [documentation](https://docs.privategpt.dev/).
Please check it out for the latest updates!
### Motivation behind PrivateGPT
Generative AI is a game changer for our society, but adoption in companies of all sizes and data-sensitive

View file

@ -1,116 +1,16 @@
services:
#-----------------------------------
#---- Private-GPT services ---------
#-----------------------------------
# Private-GPT service for the Ollama CPU and GPU modes
# This service builds from an external Dockerfile and runs the Ollama mode.
private-gpt-ollama:
image: ${PGPT_IMAGE:-zylonai/private-gpt}:${PGPT_TAG:-0.6.2}-ollama # x-release-please-version
user: root
private-gpt:
build:
context: .
dockerfile: Dockerfile.ollama
volumes:
- ./local_data:/home/worker/app/local_data
ports:
- "8001:8001"
environment:
PORT: 8001
PGPT_PROFILES: docker
PGPT_MODE: ollama
PGPT_EMBED_MODE: ollama
PGPT_OLLAMA_API_BASE: http://ollama:11434
HF_TOKEN: ${HF_TOKEN:-}
profiles:
- ""
- ollama-cpu
- ollama-cuda
- ollama-api
depends_on:
ollama:
condition: service_healthy
# Private-GPT service for the local mode
# This service builds from a local Dockerfile and runs the application in local mode.
private-gpt-llamacpp-cpu:
image: ${PGPT_IMAGE:-zylonai/private-gpt}:${PGPT_TAG:-0.6.2}-llamacpp-cpu # x-release-please-version
user: root
build:
context: .
dockerfile: Dockerfile.llamacpp-cpu
dockerfile: Dockerfile.external
volumes:
- ./local_data/:/home/worker/app/local_data
- ./models/:/home/worker/app/models
entrypoint: sh -c ".venv/bin/python scripts/setup && .venv/bin/python -m private_gpt"
ports:
- "8001:8001"
- 8001:8080
environment:
PORT: 8001
PGPT_PROFILES: local
HF_TOKEN: ${HF_TOKEN:-}
profiles:
- llamacpp-cpu
#-----------------------------------
#---- Ollama services --------------
#-----------------------------------
# Traefik reverse proxy for the Ollama service
# This will route requests to the Ollama service based on the profile.
PORT: 8080
PGPT_PROFILES: docker
PGPT_MODE: ollama
ollama:
image: traefik:v2.10
healthcheck:
test: ["CMD", "sh", "-c", "wget -q --spider http://ollama:11434 || exit 1"]
interval: 10s
retries: 3
start_period: 5s
timeout: 5s
ports:
- "8080:8080"
command:
- "--providers.file.filename=/etc/router.yml"
- "--log.level=ERROR"
- "--api.insecure=true"
- "--providers.docker=true"
- "--providers.docker.exposedbydefault=false"
- "--entrypoints.web.address=:11434"
volumes:
- /var/run/docker.sock:/var/run/docker.sock:ro
- ./.docker/router.yml:/etc/router.yml:ro
extra_hosts:
- "host.docker.internal:host-gateway"
profiles:
- ""
- ollama-cpu
- ollama-cuda
- ollama-api
# Ollama service for the CPU mode
ollama-cpu:
image: ollama/ollama:latest
ports:
- "11434:11434"
volumes:
- ./models:/root/.ollama
profiles:
- ""
- ollama-cpu
# Ollama service for the CUDA mode
ollama-cuda:
image: ollama/ollama:latest
ports:
- "11434:11434"
volumes:
- ./models:/root/.ollama
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
profiles:
- ollama-cuda

View file

@ -10,9 +10,6 @@ tabs:
overview:
display-name: Overview
icon: "fa-solid fa-home"
quickstart:
display-name: Quickstart
icon: "fa-solid fa-rocket"
installation:
display-name: Installation
icon: "fa-solid fa-download"
@ -35,12 +32,6 @@ navigation:
contents:
- page: Introduction
path: ./docs/pages/overview/welcome.mdx
- tab: quickstart
layout:
- section: Getting started
contents:
- page: Quickstart
path: ./docs/pages/quickstart/quickstart.mdx
# How to install PrivateGPT, with FAQ and troubleshooting
- tab: installation
layout:
@ -83,16 +74,14 @@ navigation:
path: ./docs/pages/ui/gradio.mdx
- page: Alternatives
path: ./docs/pages/ui/alternatives.mdx
# Small code snippet or example of usage to help users
- tab: recipes
layout:
- section: Getting started
- section: Choice of LLM
contents:
- page: Quickstart
path: ./docs/pages/recipes/quickstart.mdx
- section: General use cases
contents:
- page: Summarize
path: ./docs/pages/recipes/summarize.mdx
# TODO: add recipes
- page: List of LLMs
path: ./docs/pages/recipes/list-llm.mdx
# More advanced usage of PrivateGPT, by API
- tab: api-reference
layout:

Binary file not shown.

Before

Width:  |  Height:  |  Size: 154 KiB

After

Width:  |  Height:  |  Size: 212 KiB

Before After
Before After

View file

@ -28,11 +28,6 @@ pyenv local 3.11
Install [Poetry](https://python-poetry.org/docs/#installing-with-the-official-installer) for dependency management:
Follow the instructions on the official Poetry website to install it.
<Callout intent="warning">
A bug exists in Poetry versions 1.7.0 and earlier. We strongly recommend upgrading to a tested version.
To upgrade Poetry to latest tested version, run `poetry self update 1.8.3` after installing it.
</Callout>
### 4. Optional: Install `make`
To run various scripts, you need to install `make`. Follow the instructions for your operating system:
#### macOS
@ -135,22 +130,18 @@ Go to [ollama.ai](https://ollama.ai/) and follow the instructions to install Oll
After the installation, make sure the Ollama desktop app is closed.
Install the models to be used, the default settings-ollama.yaml is configured to user `mistral 7b` LLM (~4GB) and `nomic-embed-text` Embeddings (~275MB). Therefore:
```bash
ollama pull mistral
ollama pull nomic-embed-text
```
Now, start Ollama service (it will start a local inference server, serving both the LLM and the Embeddings):
```bash
ollama serve
```
Install the models to be used, the default settings-ollama.yaml is configured to user llama3.1 8b LLM (~4GB) and nomic-embed-text Embeddings (~275MB)
By default, PGPT will automatically pull models as needed. This behavior can be changed by modifying the `ollama.autopull_models` property.
In any case, if you want to manually pull models, run the following commands:
```bash
ollama pull llama3.1
ollama pull nomic-embed-text
```
Once done, on a different terminal, you can install PrivateGPT with the following command:
```bash
poetry install --extras "ui llms-ollama embeddings-ollama vector-stores-qdrant"
@ -307,12 +298,11 @@ If you have all required dependencies properly configured running the
following powershell command should succeed.
```powershell
$env:CMAKE_ARGS='-DLLAMA_CUBLAS=on'; poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python numpy==1.26.0
$env:CMAKE_ARGS='-DLLAMA_CUBLAS=on'; poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
```
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`. If there is some issue, please refer to the
[troubleshooting](/installation/getting-started/troubleshooting#building-llama-cpp-with-nvidia-gpu-support) section.
time you start the server `BLAS = 1`.
```console
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)
@ -340,12 +330,11 @@ Some tips:
After that running the following command in the repository will install llama.cpp with GPU support:
```bash
CMAKE_ARGS='-DLLAMA_CUBLAS=on' poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python numpy==1.26.0
CMAKE_ARGS='-DLLAMA_CUBLAS=on' poetry run pip install --force-reinstall --no-cache-dir llama-cpp-python
```
If your installation was correct, you should see a message similar to the following next
time you start the server `BLAS = 1`. If there is some issue, please refer to the
[troubleshooting](/installation/getting-started/troubleshooting#building-llama-cpp-with-nvidia-gpu-support) section.
time you start the server `BLAS = 1`.
```
llama_new_context_with_model: total VRAM used: 4857.93 MB (model: 4095.05 MB, context: 762.87 MB)

View file

@ -24,41 +24,8 @@ PrivateGPT uses the `AutoTokenizer` library to tokenize input text accurately. I
In your `settings.yaml` file, specify the model you want to use:
```yaml
llm:
tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
```
2. **Set Access Token for Gated Models:**
If you are using a gated model, ensure the `access_token` is set as mentioned in the previous section.
This configuration ensures that PrivateGPT can download and use the correct tokenizer for the model you are working with.
# Embedding dimensions mismatch
If you encounter an error message like `Embedding dimensions mismatch`, it is likely due to the embedding model and
current vector dimension mismatch. To resolve this issue, ensure that the model and the input data have the same vector dimensions.
By default, PrivateGPT uses `nomic-embed-text` embeddings, which have a vector dimension of 768.
If you are using a different embedding model, ensure that the vector dimensions match the model's output.
<Callout intent = "warning">
In versions below to 0.6.0, the default embedding model was `BAAI/bge-small-en-v1.5` in `huggingface` setup.
If you plan to reuse the old generated embeddings, you need to update the `settings.yaml` file to use the correct embedding model:
```yaml
huggingface:
embedding_hf_model_name: BAAI/bge-small-en-v1.5
embedding:
embed_dim: 384
```
</Callout>
# Building Llama-cpp with NVIDIA GPU support
## Out-of-memory error
If you encounter an out-of-memory error while running `llama-cpp` with CUDA, you can try the following steps to resolve the issue:
1. **Set the next environment:**
```bash
TOKENIZERS_PARALLELISM=true
```
2. **Run PrivateGPT:**
```bash
poetry run python -m privategpt
```
Give thanks to [MarioRossiGithub](https://github.com/MarioRossiGithub) for providing the following solution.

View file

@ -8,14 +8,6 @@ The ingestion of documents can be done in different ways:
## Bulk Local Ingestion
You will need to activate `data.local_ingestion.enabled` in your setting file to use this feature. Additionally,
it is probably a good idea to set `data.local_ingestion.allow_ingest_from` to specify which folders are allowed to be ingested.
<Callout intent = "warning">
Be careful enabling this feature in a production environment, as it can be a security risk, as it allows users to
ingest any local file with permissions.
</Callout>
When you are running PrivateGPT in a fully local setup, you can ingest a complete folder for convenience (containing
pdf, text files, etc.)
and optionally watch changes on it with the command:

View file

@ -1,13 +1,5 @@
PrivateGPT provides an **API** containing all the building blocks required to
build **private, context-aware AI applications**.
<Callout intent = "tip">
If you are looking for an **enterprise-ready, fully private AI workspace**
check out [Zylon's website](https://zylon.ai) or [request a demo](https://cal.com/zylon/demo?source=pgpt-docs).
Crafted by the team behind PrivateGPT, Zylon is a best-in-class AI collaborative
workspace that can be easily deployed on-premise (data center, bare metal...) or in your private cloud (AWS, GCP, Azure...).
</Callout>
The API follows and extends OpenAI API standard, and supports both normal and streaming responses.
That means that, if you can use OpenAI API in one of your tools, you can use your own PrivateGPT API instead,
with no code changes, **and for free** if you are running PrivateGPT in a `local` setup.

View file

@ -1,105 +0,0 @@
This guide provides a quick start for running different profiles of PrivateGPT using Docker Compose.
The profiles cater to various environments, including Ollama setups (CPU, CUDA, MacOS), and a fully local setup.
By default, Docker Compose will download pre-built images from a remote registry when starting the services. However, you have the option to build the images locally if needed. Details on building Docker image locally are provided at the end of this guide.
If you want to run PrivateGPT locally without Docker, refer to the [Local Installation Guide](/installation).
## Prerequisites
- **Docker and Docker Compose:** Ensure both are installed on your system.
[Installation Guide for Docker](https://docs.docker.com/get-docker/), [Installation Guide for Docker Compose](https://docs.docker.com/compose/install/).
- **Clone PrivateGPT Repository:** Clone the PrivateGPT repository to your machine and navigate to the directory:
```sh
git clone https://github.com/zylon-ai/private-gpt.git
cd private-gpt
```
## Setups
### Ollama Setups (Recommended)
#### 1. Default/Ollama CPU
**Description:**
This profile runs the Ollama service using CPU resources. It is the standard configuration for running Ollama-based Private-GPT services without GPU acceleration.
**Run:**
To start the services using pre-built images, run:
```sh
docker-compose up
```
or with a specific profile:
```sh
docker-compose --profile ollama-cpu up
```
#### 2. Ollama Nvidia CUDA
**Description:**
This profile leverages GPU acceleration with CUDA support, suitable for computationally intensive tasks that benefit from GPU resources.
**Requirements:**
Ensure that your system has compatible GPU hardware and the necessary NVIDIA drivers installed. The installation process is detailed [here](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html).
**Run:**
To start the services with CUDA support using pre-built images, run:
```sh
docker-compose --profile ollama-cuda up
```
#### 3. Ollama External API
**Description:**
This profile is designed for running PrivateGPT using Ollama installed on the host machine. This setup is particularly useful for MacOS users, as Docker does not yet support Metal GPU.
**Requirements:**
Install Ollama on your machine by following the instructions at [ollama.ai](https://ollama.ai/).
**Run:**
To start the Ollama service, use:
```sh
OLLAMA_HOST=0.0.0.0 ollama serve
```
To start the services with the host configuration using pre-built images, run:
```sh
docker-compose --profile ollama-api up
```
### Fully Local Setups
#### 1. LlamaCPP CPU
**Description:**
This profile runs the Private-GPT services locally using `llama-cpp` and Hugging Face models.
**Requirements:**
A **Hugging Face Token (HF_TOKEN)** is required for accessing Hugging Face models. Obtain your token following [this guide](/installation/getting-started/troubleshooting#downloading-gated-and-private-models).
**Run:**
Start the services with your Hugging Face token using pre-built images:
```sh
HF_TOKEN=<your_hf_token> docker-compose --profile llamacpp-cpu up
```
Replace `<your_hf_token>` with your actual Hugging Face token.
## Building Locally
If you prefer to build Docker images locally, which is useful when making changes to the codebase or the Dockerfiles, follow these steps:
### Building Locally
To build the Docker images locally, navigate to the cloned repository directory and run:
```sh
docker-compose build
```
This command compiles the necessary Docker images based on the current codebase and Dockerfile configurations.
### Forcing a Rebuild with --build
If you have made changes and need to ensure these changes are reflected in the Docker images, you can force a rebuild before starting the services:
```sh
docker-compose up --build
```
or with a specific profile:
```sh
docker-compose --profile <profile_name> up --build
```
Replace `<profile_name>` with the desired profile.

View file

@ -0,0 +1,122 @@
# List of working LLM
**Do you have any working combination of LLM and embeddings?**
Please open a PR to add it to the list, and come on our Discord to tell us about it!
## Prompt style
LLMs might have been trained with different prompt styles.
The prompt style is the way the prompt is written, and how the system message is injected in the prompt.
For example, `llama2` looks like this:
```text
<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>
{{ user_message }} [/INST]
```
While `default` (the `llama_index` default) looks like this:
```text
system: {{ system_prompt }}
user: {{ user_message }}
assistant: {{ assistant_message }}
```
The "`tag`" style looks like this:
```text
<|system|>: {{ system_prompt }}
<|user|>: {{ user_message }}
<|assistant|>: {{ assistant_message }}
```
The "`mistral`" style looks like this:
```text
<s>[INST] You are an AI assistant. [/INST]</s>[INST] Hello, how are you doing? [/INST]
```
The "`chatml`" style looks like this:
```text
<|im_start|>system
{{ system_prompt }}<|im_end|>
<|im_start|>user"
{{ user_message }}<|im_end|>
<|im_start|>assistant
{{ assistant_message }}
```
Some LLMs will not understand these prompt styles, and will not work (returning nothing).
You can try to change the prompt style to `default` (or `tag`) in the settings, and it will
change the way the messages are formatted to be passed to the LLM.
## Example of configuration
You might want to change the prompt depending on the language and model you are using.
### English, with instructions
`settings-en.yaml`:
```yml
local:
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.1-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.1.Q4_K_M.gguf
embedding_hf_model_name: BAAI/bge-small-en-v1.5
prompt_style: "llama2"
```
### French, with instructions
`settings-fr.yaml`:
```yml
local:
llm_hf_repo_id: TheBloke/Vigogne-2-7B-Instruct-GGUF
llm_hf_model_file: vigogne-2-7b-instruct.Q4_K_M.gguf
embedding_hf_model_name: dangvantuan/sentence-camembert-base
prompt_style: "default"
# prompt_style: "tag" # also works
# The default system prompt is injected only when the `prompt_style` != default, and there are no system message in the discussion
# default_system_prompt: Vous êtes un assistant IA qui répond à la question posée à la fin en utilisant le contexte suivant. Si vous ne connaissez pas la réponse, dites simplement que vous ne savez pas, n'essayez pas d'inventer une réponse. Veuillez répondre exclusivement en français.
```
You might want to change the prompt as the one above might not directly answer your question.
You can read online about how to write a good prompt, but in a nutshell, make it (extremely) directive.
You can try and troubleshot your prompt by writing multiline requests in the UI, while
writing your interaction with the model, for example:
```text
Tu es un programmeur senior qui programme en python et utilise le framework fastapi. Ecrit moi un serveur qui retourne "hello world".
```
Another example:
```text
Context: None
Situation: tu es au milieu d'un champ.
Tache: va a la rivière, en bas du champ.
Décrit comment aller a la rivière.
```
### Optimised Models
GodziLLa2-70B LLM (English, rank 2 on HuggingFace OpenLLM Leaderboard), bge large Embedding Model (rank 1 on HuggingFace MTEB Leaderboard)
`settings-optimised.yaml`:
```yml
local:
llm_hf_repo_id: TheBloke/GodziLLa2-70B-GGUF
llm_hf_model_file: godzilla2-70b.Q4_K_M.gguf
embedding_hf_model_name: BAAI/bge-large-en
prompt_style: "llama2"
```
### German speaking model
`settings-de.yaml`:
```yml
local:
llm_hf_repo_id: TheBloke/em_german_leo_mistral-GGUF
llm_hf_model_file: em_german_leo_mistral.Q4_K_M.gguf
embedding_hf_model_name: T-Systems-onsite/german-roberta-sentence-transformer-v2
#llama, default or tag
prompt_style: "default"
```

View file

@ -1,23 +0,0 @@
# Recipes
Recipes are predefined use cases that help users solve very specific tasks using PrivateGPT.
They provide a streamlined approach to achieve common goals with the platform, offering both a starting point and inspiration for further exploration.
The main goal of Recipes is to empower the community to create and share solutions, expanding the capabilities of PrivateGPT.
## How to Create a New Recipe
1. **Identify the Task**: Define a specific task or problem that the Recipe will address.
2. **Develop the Solution**: Create a clear and concise guide, including any necessary code snippets or configurations.
3. **Submit a PR**: Fork the PrivateGPT repository, add your Recipe to the appropriate section, and submit a PR for review.
We encourage you to be creative and think outside the box! Your contributions help shape the future of PrivateGPT.
## Available Recipes
<Cards>
<Card
title="Summarize"
icon="fa-solid fa-file-alt"
href="/recipes/general-use-cases/summarize"
/>
</Cards>

View file

@ -1,20 +0,0 @@
The Summarize Recipe provides a method to extract concise summaries from ingested documents or texts using PrivateGPT.
This tool is particularly useful for quickly understanding large volumes of information by distilling key points and main ideas.
## Use Case
The primary use case for the `Summarize` tool is to automate the summarization of lengthy documents,
making it easier for users to grasp the essential information without reading through entire texts.
This can be applied in various scenarios, such as summarizing research papers, news articles, or business reports.
## Key Features
1. **Ingestion-compatible**: The user provides the text to be summarized. The text can be directly inputted or retrieved from ingested documents within the system.
2. **Customization**: The summary generation can be influenced by providing specific `instructions` or a `prompt`. These inputs guide the model on how to frame the summary, allowing for customization according to user needs.
3. **Streaming Support**: The tool supports streaming, allowing for real-time summary generation, which can be particularly useful for handling large texts or providing immediate feedback.
## Contributing
If you have ideas for improving the Summarize or want to add new features, feel free to contribute!
You can submit your enhancements via a pull request on our [GitHub repository](https://github.com/zylon-ai/private-gpt).

View file

@ -339,48 +339,6 @@
}
}
},
"/v1/summarize": {
"post": {
"tags": [
"Recipes"
],
"summary": "Summarize",
"description": "Given a text, the model will return a summary.\n\nOptionally include `instructions` to influence the way the summary is generated.\n\nIf `use_context`\nis set to `true`, the model will also use the content coming from the ingested\ndocuments in the summary. The documents being used can\nbe filtered by their metadata using the `context_filter`.\nIngested documents metadata can be found using `/ingest/list` endpoint.\nIf you want all ingested documents to be used, remove `context_filter` altogether.\n\nIf `prompt` is set, it will be used as the prompt for the summarization,\notherwise the default prompt will be used.\n\nWhen using `'stream': true`, the API will return data chunks following [OpenAI's\nstreaming model](https://platform.openai.com/docs/api-reference/chat/streaming):\n```\n{\"id\":\"12345\",\"object\":\"completion.chunk\",\"created\":1694268190,\n\"model\":\"private-gpt\",\"choices\":[{\"index\":0,\"delta\":{\"content\":\"Hello\"},\n\"finish_reason\":null}]}\n```",
"operationId": "summarize_v1_summarize_post",
"requestBody": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/SummarizeBody"
}
}
},
"required": true
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/SummarizeResponse"
}
}
}
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/HTTPValidationError"
}
}
}
}
}
}
},
"/v1/embeddings": {
"post": {
"tags": [
@ -542,10 +500,6 @@
"Chunk": {
"properties": {
"object": {
"type": "string",
"enum": [
"context.chunk"
],
"const": "context.chunk",
"title": "Object"
},
@ -658,18 +612,10 @@
"ChunksResponse": {
"properties": {
"object": {
"type": "string",
"enum": [
"list"
],
"const": "list",
"title": "Object"
},
"model": {
"type": "string",
"enum": [
"private-gpt"
],
"const": "private-gpt",
"title": "Model"
},
@ -782,10 +728,6 @@
"title": "Index"
},
"object": {
"type": "string",
"enum": [
"embedding"
],
"const": "embedding",
"title": "Object"
},
@ -837,18 +779,10 @@
"EmbeddingsResponse": {
"properties": {
"object": {
"type": "string",
"enum": [
"list"
],
"const": "list",
"title": "Object"
},
"model": {
"type": "string",
"enum": [
"private-gpt"
],
"const": "private-gpt",
"title": "Model"
},
@ -884,10 +818,6 @@
"HealthResponse": {
"properties": {
"status": {
"type": "string",
"enum": [
"ok"
],
"const": "ok",
"title": "Status",
"default": "ok"
@ -899,18 +829,10 @@
"IngestResponse": {
"properties": {
"object": {
"type": "string",
"enum": [
"list"
],
"const": "list",
"title": "Object"
},
"model": {
"type": "string",
"enum": [
"private-gpt"
],
"const": "private-gpt",
"title": "Model"
},
@ -957,10 +879,6 @@
"IngestedDoc": {
"properties": {
"object": {
"type": "string",
"enum": [
"ingest.document"
],
"const": "ingest.document",
"title": "Object"
},
@ -1083,10 +1001,6 @@
]
},
"model": {
"type": "string",
"enum": [
"private-gpt"
],
"const": "private-gpt",
"title": "Model"
},
@ -1160,78 +1074,6 @@
"title": "OpenAIMessage",
"description": "Inference result, with the source of the message.\n\nRole could be the assistant or system\n(providing a default response, not AI generated)."
},
"SummarizeBody": {
"properties": {
"text": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"title": "Text"
},
"use_context": {
"type": "boolean",
"title": "Use Context",
"default": false
},
"context_filter": {
"anyOf": [
{
"$ref": "#/components/schemas/ContextFilter"
},
{
"type": "null"
}
]
},
"prompt": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"title": "Prompt"
},
"instructions": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"title": "Instructions"
},
"stream": {
"type": "boolean",
"title": "Stream",
"default": false
}
},
"type": "object",
"title": "SummarizeBody"
},
"SummarizeResponse": {
"properties": {
"summary": {
"type": "string",
"title": "Summary"
}
},
"type": "object",
"required": [
"summary"
],
"title": "SummarizeResponse"
},
"ValidationError": {
"properties": {
"loc": {

6524
poetry.lock generated

File diff suppressed because it is too large Load diff

View file

@ -31,7 +31,6 @@ class EmbeddingComponent:
self.embedding_model = HuggingFaceEmbedding(
model_name=settings.huggingface.embedding_hf_model_name,
cache_folder=str(models_cache_path),
trust_remote_code=settings.huggingface.trust_remote_code,
)
case "sagemaker":
try:
@ -72,46 +71,16 @@ class EmbeddingComponent:
from llama_index.embeddings.ollama import ( # type: ignore
OllamaEmbedding,
)
from ollama import Client # type: ignore
except ImportError as e:
raise ImportError(
"Local dependencies not found, install with `poetry install --extras embeddings-ollama`"
) from e
ollama_settings = settings.ollama
# Calculate embedding model. If not provided tag, it will be use latest
model_name = (
ollama_settings.embedding_model + ":latest"
if ":" not in ollama_settings.embedding_model
else ollama_settings.embedding_model
)
self.embedding_model = OllamaEmbedding(
model_name=model_name,
model_name=ollama_settings.embedding_model,
base_url=ollama_settings.embedding_api_base,
)
if ollama_settings.autopull_models:
if ollama_settings.autopull_models:
from private_gpt.utils.ollama import (
check_connection,
pull_model,
)
# TODO: Reuse llama-index client when llama-index is updated
client = Client(
host=ollama_settings.embedding_api_base,
timeout=ollama_settings.request_timeout,
)
if not check_connection(client):
raise ValueError(
f"Failed to connect to Ollama, "
f"check if Ollama server is running on {ollama_settings.api_base}"
)
pull_model(client, model_name)
case "azopenai":
try:
from llama_index.embeddings.azure_openai import ( # type: ignore
@ -144,23 +113,6 @@ class EmbeddingComponent:
api_key=settings.gemini.api_key,
model_name=settings.gemini.embedding_model,
)
case "mistralai":
try:
from llama_index.embeddings.mistralai import ( # type: ignore
MistralAIEmbedding,
)
except ImportError as e:
raise ImportError(
"Mistral dependencies not found, install with `poetry install --extras embeddings-mistral`"
) from e
api_key = settings.openai.api_key
model = settings.openai.embedding_model
self.embedding_model = MistralAIEmbedding(
api_key=api_key,
model=model,
)
case "mock":
# Not a random number, is the dimensionality used by
# the default embedding model

View file

@ -403,7 +403,7 @@ class PipelineIngestComponent(BaseIngestComponentWithIndex):
self.transformations,
show_progress=self.show_progress,
)
self.node_q.put(("process", file_name, documents, list(nodes)))
self.node_q.put(("process", file_name, documents, nodes))
finally:
self.doc_semaphore.release()
self.doc_q.task_done() # unblock Q joins

View file

@ -92,13 +92,7 @@ class IngestionHelper:
return string_reader.load_data([file_data.read_text()])
logger.debug("Specific reader found for extension=%s", extension)
documents = reader_cls().load_data(file_data)
# Sanitize NUL bytes in text which can't be stored in Postgres
for i in range(len(documents)):
documents[i].text = documents[i].text.replace("\u0000", "")
return documents
return reader_cls().load_data(file_data)
@staticmethod
def _exclude_metadata(documents: list[Document]) -> None:

View file

@ -120,6 +120,7 @@ class LLMComponent:
api_version="",
temperature=settings.llm.temperature,
context_window=settings.llm.context_window,
max_new_tokens=settings.llm.max_new_tokens,
messages_to_prompt=prompt_style.messages_to_prompt,
completion_to_prompt=prompt_style.completion_to_prompt,
tokenizer=settings.llm.tokenizer,
@ -145,15 +146,8 @@ class LLMComponent:
"repeat_penalty": ollama_settings.repeat_penalty, # ollama llama-cpp
}
# calculate llm model. If not provided tag, it will be use latest
model_name = (
ollama_settings.llm_model + ":latest"
if ":" not in ollama_settings.llm_model
else ollama_settings.llm_model
)
llm = Ollama(
model=model_name,
self.llm = Ollama(
model=ollama_settings.llm_model,
base_url=ollama_settings.api_base,
temperature=settings.llm.temperature,
context_window=settings.llm.context_window,
@ -161,16 +155,6 @@ class LLMComponent:
request_timeout=ollama_settings.request_timeout,
)
if ollama_settings.autopull_models:
from private_gpt.utils.ollama import check_connection, pull_model
if not check_connection(llm.client):
raise ValueError(
f"Failed to connect to Ollama, "
f"check if Ollama server is running on {ollama_settings.api_base}"
)
pull_model(llm.client, model_name)
if (
ollama_settings.keep_alive
!= ollama_settings.model_fields["keep_alive"].default
@ -183,12 +167,10 @@ class LLMComponent:
return wrapper
Ollama.chat = add_keep_alive(Ollama.chat) # type: ignore
Ollama.stream_chat = add_keep_alive(Ollama.stream_chat) # type: ignore
Ollama.complete = add_keep_alive(Ollama.complete) # type: ignore
Ollama.stream_complete = add_keep_alive(Ollama.stream_complete) # type: ignore
self.llm = llm
Ollama.chat = add_keep_alive(Ollama.chat)
Ollama.stream_chat = add_keep_alive(Ollama.stream_chat)
Ollama.complete = add_keep_alive(Ollama.complete)
Ollama.stream_complete = add_keep_alive(Ollama.stream_complete)
case "azopenai":
try:

View file

@ -40,8 +40,7 @@ class AbstractPromptStyle(abc.ABC):
logger.debug("Got for messages='%s' the prompt='%s'", messages, prompt)
return prompt
def completion_to_prompt(self, prompt: str) -> str:
completion = prompt # Fix: Llama-index parameter has to be named as prompt
def completion_to_prompt(self, completion: str) -> str:
prompt = self._completion_to_prompt(completion)
logger.debug("Got for completion='%s' the prompt='%s'", completion, prompt)
return prompt
@ -139,72 +138,6 @@ class Llama2PromptStyle(AbstractPromptStyle):
)
class Llama3PromptStyle(AbstractPromptStyle):
r"""Template for Meta's Llama 3.1.
The format follows this structure:
<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
[System message content]<|eot_id|>
<|start_header_id|>user<|end_header_id|>
[User message content]<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
[Assistant message content]<|eot_id|>
...
(Repeat for each message, including possible 'ipython' role)
"""
BOS, EOS = "<|begin_of_text|>", "<|end_of_text|>"
B_INST, E_INST = "<|start_header_id|>", "<|end_header_id|>"
EOT = "<|eot_id|>"
B_SYS, E_SYS = "<|start_header_id|>system<|end_header_id|>", "<|eot_id|>"
ASSISTANT_INST = "<|start_header_id|>assistant<|end_header_id|>"
DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. \
Always answer as helpfully as possible and follow ALL given instructions. \
Do not speculate or make up information. \
Do not reference any given instructions or context. \
"""
def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
prompt = ""
has_system_message = False
for i, message in enumerate(messages):
if not message or message.content is None:
continue
if message.role == MessageRole.SYSTEM:
prompt += f"{self.B_SYS}\n\n{message.content.strip()}{self.E_SYS}"
has_system_message = True
else:
role_header = f"{self.B_INST}{message.role.value}{self.E_INST}"
prompt += f"{role_header}\n\n{message.content.strip()}{self.EOT}"
# Add assistant header if the last message is not from the assistant
if i == len(messages) - 1 and message.role != MessageRole.ASSISTANT:
prompt += f"{self.ASSISTANT_INST}\n\n"
# Add default system prompt if no system message was provided
if not has_system_message:
prompt = (
f"{self.B_SYS}\n\n{self.DEFAULT_SYSTEM_PROMPT}{self.E_SYS}" + prompt
)
# TODO: Implement tool handling logic
return prompt
def _completion_to_prompt(self, completion: str) -> str:
return (
f"{self.B_SYS}\n\n{self.DEFAULT_SYSTEM_PROMPT}{self.E_SYS}"
f"{self.B_INST}user{self.E_INST}\n\n{completion.strip()}{self.EOT}"
f"{self.ASSISTANT_INST}\n\n"
)
class TagPromptStyle(AbstractPromptStyle):
"""Tag prompt style (used by Vigogne) that uses the prompt style `<|ROLE|>`.
@ -286,9 +219,7 @@ class ChatMLPromptStyle(AbstractPromptStyle):
def get_prompt_style(
prompt_style: (
Literal["default", "llama2", "llama3", "tag", "mistral", "chatml"] | None
)
prompt_style: Literal["default", "llama2", "tag", "mistral", "chatml"] | None
) -> AbstractPromptStyle:
"""Get the prompt style to use from the given string.
@ -299,8 +230,6 @@ def get_prompt_style(
return DefaultPromptStyle()
elif prompt_style == "llama2":
return Llama2PromptStyle()
elif prompt_style == "llama3":
return Llama3PromptStyle()
elif prompt_style == "tag":
return TagPromptStyle()
elif prompt_style == "mistral":

View file

@ -38,10 +38,10 @@ class NodeStoreComponent:
case "postgres":
try:
from llama_index.storage.docstore.postgres import ( # type: ignore
from llama_index.core.storage.docstore.postgres_docstore import (
PostgresDocumentStore,
)
from llama_index.storage.index_store.postgres import ( # type: ignore
from llama_index.core.storage.index_store.postgres_index_store import (
PostgresIndexStore,
)
except ImportError:
@ -55,7 +55,6 @@ class NodeStoreComponent:
self.index_store = PostgresIndexStore.from_params(
**settings.postgres.model_dump(exclude_none=True)
)
self.doc_store = PostgresDocumentStore.from_params(
**settings.postgres.model_dump(exclude_none=True)
)

View file

@ -1,17 +1,14 @@
from collections.abc import Generator, Sequence
from typing import TYPE_CHECKING, Any
from collections.abc import Generator
from typing import Any
from llama_index.core.schema import BaseNode, MetadataMode
from llama_index.core.vector_stores.utils import node_to_metadata_dict
from llama_index.vector_stores.chroma import ChromaVectorStore # type: ignore
if TYPE_CHECKING:
from collections.abc import Mapping
def chunk_list(
lst: Sequence[BaseNode], max_chunk_size: int
) -> Generator[Sequence[BaseNode], None, None]:
lst: list[BaseNode], max_chunk_size: int
) -> Generator[list[BaseNode], None, None]:
"""Yield successive max_chunk_size-sized chunks from lst.
Args:
@ -63,7 +60,7 @@ class BatchedChromaVectorStore(ChromaVectorStore): # type: ignore
)
self.chroma_client = chroma_client
def add(self, nodes: Sequence[BaseNode], **add_kwargs: Any) -> list[str]:
def add(self, nodes: list[BaseNode], **add_kwargs: Any) -> list[str]:
"""Add nodes to index, batching the insertion to avoid issues.
Args:
@ -81,8 +78,8 @@ class BatchedChromaVectorStore(ChromaVectorStore): # type: ignore
all_ids = []
for node_chunk in node_chunks:
embeddings: list[Sequence[float]] = []
metadatas: list[Mapping[str, Any]] = []
embeddings = []
metadatas = []
ids = []
documents = []
for node in node_chunk:

View file

@ -15,7 +15,6 @@ from private_gpt.server.completions.completions_router import completions_router
from private_gpt.server.embeddings.embeddings_router import embeddings_router
from private_gpt.server.health.health_router import health_router
from private_gpt.server.ingest.ingest_router import ingest_router
from private_gpt.server.recipes.summarize.summarize_router import summarize_router
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
@ -33,13 +32,11 @@ def create_app(root_injector: Injector) -> FastAPI:
app.include_router(chat_router)
app.include_router(chunks_router)
app.include_router(ingest_router)
app.include_router(summarize_router)
app.include_router(embeddings_router)
app.include_router(health_router)
# Add LlamaIndex simple observability
global_handler = create_global_handler("simple")
if global_handler:
LlamaIndexSettings.callback_manager = CallbackManager([global_handler])
settings = root_injector.get(Settings)

View file

@ -1,5 +1,4 @@
from dataclasses import dataclass
from typing import TYPE_CHECKING
from injector import inject, singleton
from llama_index.core.chat_engine import ContextChatEngine, SimpleChatEngine
@ -27,9 +26,6 @@ from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chunks.chunks_service import Chunk
from private_gpt.settings.settings import Settings
if TYPE_CHECKING:
from llama_index.core.postprocessor.types import BaseNodePostprocessor
class Completion(BaseModel):
response: str
@ -118,15 +114,12 @@ class ChatService:
context_filter=context_filter,
similarity_top_k=self.settings.rag.similarity_top_k,
)
node_postprocessors: list[BaseNodePostprocessor] = [
node_postprocessors = [
MetadataReplacementPostProcessor(target_metadata_key="window"),
]
if settings.rag.similarity_value:
node_postprocessors.append(
SimilarityPostprocessor(
similarity_cutoff=settings.rag.similarity_value
)
)
),
]
if settings.rag.rerank.enabled:
rerank_postprocessor = SentenceTransformerRerank(

View file

@ -1,86 +0,0 @@
from fastapi import APIRouter, Depends, Request
from pydantic import BaseModel
from starlette.responses import StreamingResponse
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.open_ai.openai_models import (
to_openai_sse_stream,
)
from private_gpt.server.recipes.summarize.summarize_service import SummarizeService
from private_gpt.server.utils.auth import authenticated
summarize_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
class SummarizeBody(BaseModel):
text: str | None = None
use_context: bool = False
context_filter: ContextFilter | None = None
prompt: str | None = None
instructions: str | None = None
stream: bool = False
class SummarizeResponse(BaseModel):
summary: str
@summarize_router.post(
"/summarize",
response_model=None,
summary="Summarize",
responses={200: {"model": SummarizeResponse}},
tags=["Recipes"],
)
def summarize(
request: Request, body: SummarizeBody
) -> SummarizeResponse | StreamingResponse:
"""Given a text, the model will return a summary.
Optionally include `instructions` to influence the way the summary is generated.
If `use_context`
is set to `true`, the model will also use the content coming from the ingested
documents in the summary. The documents being used can
be filtered by their metadata using the `context_filter`.
Ingested documents metadata can be found using `/ingest/list` endpoint.
If you want all ingested documents to be used, remove `context_filter` altogether.
If `prompt` is set, it will be used as the prompt for the summarization,
otherwise the default prompt will be used.
When using `'stream': true`, the API will return data chunks following [OpenAI's
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
```
{"id":"12345","object":"completion.chunk","created":1694268190,
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
"finish_reason":null}]}
```
"""
service: SummarizeService = request.state.injector.get(SummarizeService)
if body.stream:
completion_gen = service.stream_summarize(
text=body.text,
instructions=body.instructions,
use_context=body.use_context,
context_filter=body.context_filter,
prompt=body.prompt,
)
return StreamingResponse(
to_openai_sse_stream(
response_generator=completion_gen,
),
media_type="text/event-stream",
)
else:
completion = service.summarize(
text=body.text,
instructions=body.instructions,
use_context=body.use_context,
context_filter=body.context_filter,
prompt=body.prompt,
)
return SummarizeResponse(
summary=completion,
)

View file

@ -1,172 +0,0 @@
from itertools import chain
from injector import inject, singleton
from llama_index.core import (
Document,
StorageContext,
SummaryIndex,
)
from llama_index.core.base.response.schema import Response, StreamingResponse
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.response_synthesizers import ResponseMode
from llama_index.core.storage.docstore.types import RefDocInfo
from llama_index.core.types import TokenGen
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.llm.llm_component import LLMComponent
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent,
)
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.settings.settings import Settings
DEFAULT_SUMMARIZE_PROMPT = (
"Provide a comprehensive summary of the provided context information. "
"The summary should cover all the key points and main ideas presented in "
"the original text, while also condensing the information into a concise "
"and easy-to-understand format. Please ensure that the summary includes "
"relevant details and examples that support the main ideas, while avoiding "
"any unnecessary information or repetition."
)
@singleton
class SummarizeService:
@inject
def __init__(
self,
settings: Settings,
llm_component: LLMComponent,
node_store_component: NodeStoreComponent,
vector_store_component: VectorStoreComponent,
embedding_component: EmbeddingComponent,
) -> None:
self.settings = settings
self.llm_component = llm_component
self.node_store_component = node_store_component
self.vector_store_component = vector_store_component
self.embedding_component = embedding_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
@staticmethod
def _filter_ref_docs(
ref_docs: dict[str, RefDocInfo], context_filter: ContextFilter | None
) -> list[RefDocInfo]:
if context_filter is None or not context_filter.docs_ids:
return list(ref_docs.values())
return [
ref_doc
for doc_id, ref_doc in ref_docs.items()
if doc_id in context_filter.docs_ids
]
def _summarize(
self,
use_context: bool = False,
stream: bool = False,
text: str | None = None,
instructions: str | None = None,
context_filter: ContextFilter | None = None,
prompt: str | None = None,
) -> str | TokenGen:
nodes_to_summarize = []
# Add text to summarize
if text:
text_documents = [Document(text=text)]
nodes_to_summarize += (
SentenceSplitter.from_defaults().get_nodes_from_documents(
text_documents
)
)
# Add context documents to summarize
if use_context:
# 1. Recover all ref docs
ref_docs: dict[str, RefDocInfo] | None = (
self.storage_context.docstore.get_all_ref_doc_info()
)
if ref_docs is None:
raise ValueError("No documents have been ingested yet.")
# 2. Filter documents based on context_filter (if provided)
filtered_ref_docs = self._filter_ref_docs(ref_docs, context_filter)
# 3. Get all nodes from the filtered documents
filtered_node_ids = chain.from_iterable(
[ref_doc.node_ids for ref_doc in filtered_ref_docs]
)
filtered_nodes = self.storage_context.docstore.get_nodes(
node_ids=list(filtered_node_ids),
)
nodes_to_summarize += filtered_nodes
# Create a SummaryIndex to summarize the nodes
summary_index = SummaryIndex(
nodes=nodes_to_summarize,
storage_context=StorageContext.from_defaults(), # In memory SummaryIndex
show_progress=True,
)
# Make a tree summarization query
# above the set of all candidate nodes
query_engine = summary_index.as_query_engine(
llm=self.llm_component.llm,
response_mode=ResponseMode.TREE_SUMMARIZE,
streaming=stream,
use_async=self.settings.summarize.use_async,
)
prompt = prompt or DEFAULT_SUMMARIZE_PROMPT
summarize_query = prompt + "\n" + (instructions or "")
response = query_engine.query(summarize_query)
if isinstance(response, Response):
return response.response or ""
elif isinstance(response, StreamingResponse):
return response.response_gen
else:
raise TypeError(f"The result is not of a supported type: {type(response)}")
def summarize(
self,
use_context: bool = False,
text: str | None = None,
instructions: str | None = None,
context_filter: ContextFilter | None = None,
prompt: str | None = None,
) -> str:
return self._summarize(
use_context=use_context,
stream=False,
text=text,
instructions=instructions,
context_filter=context_filter,
prompt=prompt,
) # type: ignore
def stream_summarize(
self,
use_context: bool = False,
text: str | None = None,
instructions: str | None = None,
context_filter: ContextFilter | None = None,
prompt: str | None = None,
) -> TokenGen:
return self._summarize(
use_context=use_context,
stream=True,
text=text,
instructions=instructions,
context_filter=context_filter,
prompt=prompt,
) # type: ignore

View file

@ -59,27 +59,6 @@ class AuthSettings(BaseModel):
)
class IngestionSettings(BaseModel):
"""Ingestion configuration.
This configuration is used to control the ingestion of data into the system
using non-server methods. This is useful for local development and testing;
or to ingest in bulk from a folder.
Please note that this configuration is not secure and should be used in
a controlled environment only (setting right permissions, etc.).
"""
enabled: bool = Field(
description="Flag indicating if local ingestion is enabled or not.",
default=False,
)
allow_ingest_from: list[str] = Field(
description="A list of folders that should be permitted to make ingest requests.",
default=[],
)
class ServerSettings(BaseModel):
env_name: str = Field(
description="Name of the environment (prod, staging, local...)"
@ -95,10 +74,6 @@ class ServerSettings(BaseModel):
class DataSettings(BaseModel):
local_ingestion: IngestionSettings = Field(
description="Ingestion configuration",
default_factory=lambda: IngestionSettings(allow_ingest_from=["*"]),
)
local_data_folder: str = Field(
description="Path to local storage."
"It will be treated as an absolute path if it starts with /"
@ -136,20 +111,17 @@ class LLMSettings(BaseModel):
0.1,
description="The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual.",
)
prompt_style: Literal["default", "llama2", "llama3", "tag", "mistral", "chatml"] = (
Field(
prompt_style: Literal["default", "llama2", "tag", "mistral", "chatml"] = Field(
"llama2",
description=(
"The prompt style to use for the chat engine. "
"If `default` - use the default prompt style from the llama_index. It should look like `role: message`.\n"
"If `llama2` - use the llama2 prompt style from the llama_index. Based on `<s>`, `[INST]` and `<<SYS>>`.\n"
"If `llama3` - use the llama3 prompt style from the llama_index."
"If `tag` - use the `tag` prompt style. It should look like `<|role|>: message`. \n"
"If `mistral` - use the `mistral prompt style. It shoudl look like <s>[INST] {System Prompt} [/INST]</s>[INST] { UserInstructions } [/INST]"
"`llama2` is the historic behaviour. `default` might work better with your custom models."
),
)
)
class VectorstoreSettings(BaseModel):
@ -189,22 +161,11 @@ class HuggingFaceSettings(BaseModel):
None,
description="Huggingface access token, required to download some models",
)
trust_remote_code: bool = Field(
False,
description="If set to True, the code from the remote model will be trusted and executed.",
)
class EmbeddingSettings(BaseModel):
mode: Literal[
"huggingface",
"openai",
"azopenai",
"sagemaker",
"ollama",
"mock",
"gemini",
"mistralai",
"huggingface", "openai", "azopenai", "sagemaker", "ollama", "mock", "gemini"
]
ingest_mode: Literal["simple", "batch", "parallel", "pipeline"] = Field(
"simple",
@ -329,10 +290,6 @@ class OllamaSettings(BaseModel):
120.0,
description="Time elapsed until ollama times out the request. Default is 120s. Format is float. ",
)
autopull_models: bool = Field(
False,
description="If set to True, the Ollama will automatically pull the models from the API base.",
)
class AzureOpenAISettings(BaseModel):
@ -357,10 +314,6 @@ class AzureOpenAISettings(BaseModel):
class UISettings(BaseModel):
enabled: bool
path: str
default_mode: Literal["RAG", "Search", "Basic", "Summarize"] = Field(
"RAG",
description="The default mode.",
)
default_chat_system_prompt: str = Field(
None,
description="The default system prompt to use for the chat mode.",
@ -368,10 +321,6 @@ class UISettings(BaseModel):
default_query_system_prompt: str = Field(
None, description="The default system prompt to use for the query mode."
)
default_summarization_system_prompt: str = Field(
None,
description="The default system prompt to use for the summarization mode.",
)
delete_file_button_enabled: bool = Field(
True, description="If the button to delete a file is enabled or not."
)
@ -407,13 +356,6 @@ class RagSettings(BaseModel):
rerank: RerankSettings
class SummarizeSettings(BaseModel):
use_async: bool = Field(
True,
description="If set to True, the summarization will be done asynchronously.",
)
class ClickHouseSettings(BaseModel):
host: str = Field(
"localhost",
@ -603,7 +545,6 @@ class Settings(BaseModel):
vectorstore: VectorstoreSettings
nodestore: NodeStoreSettings
rag: RagSettings
summarize: SummarizeSettings
qdrant: QdrantSettings | None = None
postgres: PostgresSettings | None = None
clickhouse: ClickHouseSettings | None = None

View file

@ -1,10 +1,9 @@
"""This file should be imported if and only if you want to run the UI locally."""
import base64
import itertools
import logging
import time
from collections.abc import Iterable
from enum import Enum
from pathlib import Path
from typing import Any
@ -13,7 +12,6 @@ from fastapi import FastAPI
from gradio.themes.utils.colors import slate # type: ignore
from injector import inject, singleton
from llama_index.core.llms import ChatMessage, ChatResponse, MessageRole
from llama_index.core.types import TokenGen
from pydantic import BaseModel
from private_gpt.constants import PROJECT_ROOT_PATH
@ -22,7 +20,6 @@ from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chat.chat_service import ChatService, CompletionGen
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
from private_gpt.server.ingest.ingest_service import IngestService
from private_gpt.server.recipes.summarize.summarize_service import SummarizeService
from private_gpt.settings.settings import settings
from private_gpt.ui.images import logo_svg
@ -34,22 +31,9 @@ AVATAR_BOT = THIS_DIRECTORY_RELATIVE / "avatar-bot.ico"
UI_TAB_TITLE = "My Private GPT"
SOURCES_SEPARATOR = "<hr>Sources: \n"
SOURCES_SEPARATOR = "\n\n Sources: \n"
class Modes(str, Enum):
RAG_MODE = "RAG"
SEARCH_MODE = "Search"
BASIC_CHAT_MODE = "Basic"
SUMMARIZE_MODE = "Summarize"
MODES: list[Modes] = [
Modes.RAG_MODE,
Modes.SEARCH_MODE,
Modes.BASIC_CHAT_MODE,
Modes.SUMMARIZE_MODE,
]
MODES = ["Query Files", "Search Files", "LLM Chat (no context from files)"]
class Source(BaseModel):
@ -87,12 +71,10 @@ class PrivateGptUi:
ingest_service: IngestService,
chat_service: ChatService,
chunks_service: ChunksService,
summarizeService: SummarizeService,
) -> None:
self._ingest_service = ingest_service
self._chat_service = chat_service
self._chunks_service = chunks_service
self._summarize_service = summarizeService
# Cache the UI blocks
self._ui_block = None
@ -100,15 +82,10 @@ class PrivateGptUi:
self._selected_filename = None
# Initialize system prompt based on default mode
default_mode_map = {mode.value: mode for mode in Modes}
self._default_mode = default_mode_map.get(
settings().ui.default_mode, Modes.RAG_MODE
)
self._system_prompt = self._get_default_system_prompt(self._default_mode)
self.mode = MODES[0]
self._system_prompt = self._get_default_system_prompt(self.mode)
def _chat(
self, message: str, history: list[list[str]], mode: Modes, *_: Any
) -> Any:
def _chat(self, message: str, history: list[list[str]], mode: str, *_: Any) -> Any:
def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]:
full_response: str = ""
stream = completion_gen.response
@ -132,29 +109,23 @@ class PrivateGptUi:
+ f"{index}. {source.file} (page {source.page}) \n\n"
)
used_files.add(f"{source.file}-{source.page}")
sources_text += "<hr>\n\n"
full_response += sources_text
yield full_response
def yield_tokens(token_gen: TokenGen) -> Iterable[str]:
full_response: str = ""
for token in token_gen:
full_response += str(token)
yield full_response
def build_history() -> list[ChatMessage]:
history_messages: list[ChatMessage] = []
for interaction in history:
history_messages.append(
ChatMessage(content=interaction[0], role=MessageRole.USER)
)
if len(interaction) > 1 and interaction[1] is not None:
history_messages.append(
history_messages: list[ChatMessage] = list(
itertools.chain(
*[
[
ChatMessage(content=interaction[0], role=MessageRole.USER),
ChatMessage(
# Remove from history content the Sources information
content=interaction[1].split(SOURCES_SEPARATOR)[0],
role=MessageRole.ASSISTANT,
),
]
for interaction in history
]
)
)
@ -173,7 +144,8 @@ class PrivateGptUi:
),
)
match mode:
case Modes.RAG_MODE:
case "Query Files":
# Use only the selected file for the query
context_filter = None
if self._selected_filename is not None:
@ -192,14 +164,14 @@ class PrivateGptUi:
context_filter=context_filter,
)
yield from yield_deltas(query_stream)
case Modes.BASIC_CHAT_MODE:
case "LLM Chat (no context from files)":
llm_stream = self._chat_service.stream_chat(
messages=all_messages,
use_context=False,
)
yield from yield_deltas(llm_stream)
case Modes.SEARCH_MODE:
case "Search Files":
response = self._chunks_service.retrieve_relevant(
text=message, limit=4, prev_next_chunks=0
)
@ -212,76 +184,37 @@ class PrivateGptUi:
f"{source.text}"
for index, source in enumerate(sources, start=1)
)
case Modes.SUMMARIZE_MODE:
# Summarize the given message, optionally using selected files
context_filter = None
if self._selected_filename:
docs_ids = []
for ingested_document in self._ingest_service.list_ingested():
if (
ingested_document.doc_metadata["file_name"]
== self._selected_filename
):
docs_ids.append(ingested_document.doc_id)
context_filter = ContextFilter(docs_ids=docs_ids)
summary_stream = self._summarize_service.stream_summarize(
use_context=True,
context_filter=context_filter,
instructions=message,
)
yield from yield_tokens(summary_stream)
# On initialization and on mode change, this function set the system prompt
# to the default prompt based on the mode (and user settings).
@staticmethod
def _get_default_system_prompt(mode: Modes) -> str:
def _get_default_system_prompt(mode: str) -> str:
p = ""
match mode:
# For query chat mode, obtain default system prompt from settings
case Modes.RAG_MODE:
case "Query Files":
p = settings().ui.default_query_system_prompt
# For chat mode, obtain default system prompt from settings
case Modes.BASIC_CHAT_MODE:
case "LLM Chat (no context from files)":
p = settings().ui.default_chat_system_prompt
# For summarization mode, obtain default system prompt from settings
case Modes.SUMMARIZE_MODE:
p = settings().ui.default_summarization_system_prompt
# For any other mode, clear the system prompt
case _:
p = ""
return p
@staticmethod
def _get_default_mode_explanation(mode: Modes) -> str:
match mode:
case Modes.RAG_MODE:
return "Get contextualized answers from selected files."
case Modes.SEARCH_MODE:
return "Find relevant chunks of text in selected files."
case Modes.BASIC_CHAT_MODE:
return "Chat with the LLM using its training data. Files are ignored."
case Modes.SUMMARIZE_MODE:
return "Generate a summary of the selected files. Prompt to customize the result."
case _:
return ""
def _set_system_prompt(self, system_prompt_input: str) -> None:
logger.info(f"Setting system prompt to: {system_prompt_input}")
self._system_prompt = system_prompt_input
def _set_explanatation_mode(self, explanation_mode: str) -> None:
self._explanation_mode = explanation_mode
def _set_current_mode(self, mode: Modes) -> Any:
def _set_current_mode(self, mode: str) -> Any:
self.mode = mode
self._set_system_prompt(self._get_default_system_prompt(mode))
self._set_explanatation_mode(self._get_default_mode_explanation(mode))
interactive = self._system_prompt is not None
return [
gr.update(placeholder=self._system_prompt, interactive=interactive),
gr.update(value=self._explanation_mode),
]
# Update placeholder and allow interaction if default system prompt is set
if self._system_prompt:
return gr.update(placeholder=self._system_prompt, interactive=True)
# Update placeholder and disable interaction if no default system prompt is set
else:
return gr.update(placeholder=self._system_prompt, interactive=False)
def _list_ingested_files(self) -> list[list[str]]:
files = set()
@ -381,30 +314,17 @@ class PrivateGptUi:
".contain { display: flex !important; flex-direction: column !important; }"
"#component-0, #component-3, #component-10, #component-8 { height: 100% !important; }"
"#chatbot { flex-grow: 1 !important; overflow: auto !important;}"
"#col { height: calc(100vh - 112px - 16px) !important; }"
"hr { margin-top: 1em; margin-bottom: 1em; border: 0; border-top: 1px solid #FFF; }"
".avatar-image { background-color: antiquewhite; border-radius: 2px; }"
".footer { text-align: center; margin-top: 20px; font-size: 14px; display: flex; align-items: center; justify-content: center; }"
".footer-zylon-link { display:flex; margin-left: 5px; text-decoration: auto; color: var(--body-text-color); }"
".footer-zylon-link:hover { color: #C7BAFF; }"
".footer-zylon-ico { height: 20px; margin-left: 5px; background-color: antiquewhite; border-radius: 2px; }",
"#col { height: calc(100vh - 112px - 16px) !important; }",
) as blocks:
with gr.Row():
gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div")
with gr.Row(equal_height=False):
with gr.Column(scale=3):
default_mode = self._default_mode
mode = gr.Radio(
[mode.value for mode in MODES],
MODES,
label="Mode",
value=default_mode,
)
explanation_mode = gr.Textbox(
placeholder=self._get_default_mode_explanation(default_mode),
show_label=False,
max_lines=3,
interactive=False,
value="Query Files",
)
upload_button = gr.components.UploadButton(
"Upload File(s)",
@ -488,11 +408,9 @@ class PrivateGptUi:
interactive=True,
render=False,
)
# When mode changes, set default system prompt, and other stuffs
# When mode changes, set default system prompt
mode.change(
self._set_current_mode,
inputs=mode,
outputs=[system_prompt_input, explanation_mode],
self._set_current_mode, inputs=mode, outputs=system_prompt_input
)
# On blur, set system prompt to use in queries
system_prompt_input.blur(
@ -523,7 +441,6 @@ class PrivateGptUi:
"llamacpp": config_settings.llamacpp.llm_hf_model_file,
"openai": config_settings.openai.model,
"openailike": config_settings.openai.model,
"azopenai": config_settings.azopenai.llm_model,
"sagemaker": config_settings.sagemaker.llm_endpoint_name,
"mock": llm_mode,
"ollama": config_settings.ollama.llm_model,
@ -560,14 +477,6 @@ class PrivateGptUi:
),
additional_inputs=[mode, upload_button, system_prompt_input],
)
with gr.Row():
avatar_byte = AVATAR_BOT.read_bytes()
f_base64 = f"data:image/png;base64,{base64.b64encode(avatar_byte).decode('utf-8')}"
gr.HTML(
f"<div class='footer'><a class='footer-zylon-link' href='https://zylon.ai/'>Maintained by Zylon <img class='footer-zylon-ico' src='{f_base64}' alt=Zylon></a></div>"
)
return blocks
def get_ui_blocks(self) -> gr.Blocks:
@ -579,7 +488,7 @@ class PrivateGptUi:
blocks = self.get_ui_blocks()
blocks.queue()
logger.info("Mounting the gradio UI, at path=%s", path)
gr.mount_gradio_app(app, blocks, path=path, favicon_path=AVATAR_BOT)
gr.mount_gradio_app(app, blocks, path=path)
if __name__ == "__main__":

View file

@ -1,95 +0,0 @@
import logging
from collections import deque
from collections.abc import Iterator, Mapping
from typing import Any
from httpx import ConnectError
from tqdm import tqdm # type: ignore
from private_gpt.utils.retry import retry
try:
from ollama import Client, ResponseError # type: ignore
except ImportError as e:
raise ImportError(
"Ollama dependencies not found, install with `poetry install --extras llms-ollama or embeddings-ollama`"
) from e
logger = logging.getLogger(__name__)
_MAX_RETRIES = 5
_JITTER = (3.0, 10.0)
@retry(
is_async=False,
exceptions=(ConnectError, ResponseError),
tries=_MAX_RETRIES,
jitter=_JITTER,
logger=logger,
)
def check_connection(client: Client) -> bool:
try:
client.list()
return True
except (ConnectError, ResponseError) as e:
raise e
except Exception as e:
logger.error(f"Failed to connect to Ollama: {type(e).__name__}: {e!s}")
return False
def process_streaming(generator: Iterator[Mapping[str, Any]]) -> None:
progress_bars = {}
queue = deque() # type: ignore
def create_progress_bar(dgt: str, total: int) -> Any:
return tqdm(
total=total, desc=f"Pulling model {dgt[7:17]}...", unit="B", unit_scale=True
)
current_digest = None
for chunk in generator:
digest = chunk.get("digest")
completed_size = chunk.get("completed", 0)
total_size = chunk.get("total")
if digest and total_size is not None:
if digest not in progress_bars and completed_size > 0:
progress_bars[digest] = create_progress_bar(digest, total=total_size)
if current_digest is None:
current_digest = digest
else:
queue.append(digest)
if digest in progress_bars:
progress_bar = progress_bars[digest]
progress = completed_size - progress_bar.n
if completed_size > 0 and total_size >= progress != progress_bar.n:
if digest == current_digest:
progress_bar.update(progress)
if progress_bar.n >= total_size:
progress_bar.close()
current_digest = queue.popleft() if queue else None
else:
# Store progress for later update
progress_bars[digest].total = total_size
progress_bars[digest].n = completed_size
# Close any remaining progress bars at the end
for progress_bar in progress_bars.values():
progress_bar.close()
def pull_model(client: Client, model_name: str, raise_error: bool = True) -> None:
try:
installed_models = [model["name"] for model in client.list().get("models", {})]
if model_name not in installed_models:
logger.info(f"Pulling model {model_name}. Please wait...")
process_streaming(client.pull(model_name, stream=True))
logger.info(f"Model {model_name} pulled successfully")
except Exception as e:
logger.error(f"Failed to pull model {model_name}: {e!s}")
if raise_error:
raise e

View file

@ -1,31 +0,0 @@
import logging
from collections.abc import Callable
from typing import Any
from retry_async import retry as retry_untyped # type: ignore
retry_logger = logging.getLogger(__name__)
def retry(
exceptions: Any = Exception,
*,
is_async: bool = False,
tries: int = -1,
delay: float = 0,
max_delay: float | None = None,
backoff: float = 1,
jitter: float | tuple[float, float] = 0,
logger: logging.Logger = retry_logger,
) -> Callable[..., Any]:
wrapped = retry_untyped(
exceptions=exceptions,
is_async=is_async,
tries=tries,
delay=delay,
max_delay=max_delay,
backoff=backoff,
jitter=jitter,
logger=logger,
)
return wrapped # type: ignore

View file

@ -1,81 +1,80 @@
[tool.poetry]
name = "private-gpt"
version = "0.6.2"
version = "0.5.0"
description = "Private GPT"
authors = ["Zylon <hi@zylon.ai>"]
[tool.poetry.dependencies]
python = ">=3.11,<3.12"
# PrivateGPT
fastapi = { extras = ["all"], version = "^0.115.0" }
python-multipart = "^0.0.10"
injector = "^0.22.0"
pyyaml = "^6.0.2"
fastapi = { extras = ["all"], version = "^0.111.0" }
python-multipart = "^0.0.9"
injector = "^0.21.0"
pyyaml = "^6.0.1"
watchdog = "^4.0.1"
transformers = "^4.44.2"
transformers = "^4.42.3"
docx2txt = "^0.8"
cryptography = "^3.1"
# LlamaIndex core libs
llama-index-core = ">=0.11.2,<0.12.0"
llama-index-readers-file = "*"
llama-index-core = "^0.10.52"
llama-index-readers-file = "^0.1.27"
# Optional LlamaIndex integration libs
llama-index-llms-llama-cpp = {version = "*", optional = true}
llama-index-llms-openai = {version ="*", optional = true}
llama-index-llms-openai-like = {version ="*", optional = true}
llama-index-llms-ollama = {version ="*", optional = true}
llama-index-llms-azure-openai = {version ="*", optional = true}
llama-index-llms-gemini = {version ="*", optional = true}
llama-index-embeddings-ollama = {version ="*", optional = true}
llama-index-embeddings-huggingface = {version ="*", optional = true}
llama-index-embeddings-openai = {version ="*", optional = true}
llama-index-embeddings-azure-openai = {version ="*", optional = true}
llama-index-embeddings-gemini = {version ="*", optional = true}
llama-index-embeddings-mistralai = {version ="*", optional = true}
llama-index-vector-stores-qdrant = {version ="*", optional = true}
llama-index-vector-stores-milvus = {version ="*", optional = true}
llama-index-vector-stores-chroma = {version ="*", optional = true}
llama-index-vector-stores-postgres = {version ="*", optional = true}
llama-index-vector-stores-clickhouse = {version ="*", optional = true}
llama-index-storage-docstore-postgres = {version ="*", optional = true}
llama-index-storage-index-store-postgres = {version ="*", optional = true}
llama-index-llms-llama-cpp = {version = "^0.1.4", optional = true}
llama-index-llms-openai = {version = "^0.1.25", optional = true}
llama-index-llms-openai-like = {version ="^0.1.3", optional = true}
llama-index-llms-ollama = {version ="^0.1.5", optional = true}
llama-index-llms-azure-openai = {version ="^0.1.8", optional = true}
llama-index-llms-gemini = {version ="^0.1.11", optional = true}
llama-index-embeddings-ollama = {version ="^0.1.2", optional = true}
llama-index-embeddings-huggingface = {version ="^0.2.2", optional = true}
llama-index-embeddings-openai = {version ="^0.1.10", optional = true}
llama-index-embeddings-azure-openai = {version ="^0.1.10", optional = true}
llama-index-embeddings-gemini = {version ="^0.1.8", optional = true}
llama-index-vector-stores-qdrant = {version ="^0.2.10", optional = true}
llama-index-vector-stores-milvus = {version ="^0.1.20", optional = true}
llama-index-vector-stores-chroma = {version ="^0.1.10", optional = true}
llama-index-vector-stores-postgres = {version ="^0.1.11", optional = true}
llama-index-vector-stores-clickhouse = {version ="^0.1.3", optional = true}
llama-index-storage-docstore-postgres = {version ="^0.1.3", optional = true}
llama-index-storage-index-store-postgres = {version ="^0.1.4", optional = true}
# Postgres
psycopg2-binary = {version ="^2.9.9", optional = true}
asyncpg = {version="^0.29.0", optional = true}
# ClickHouse
clickhouse-connect = {version = "^0.7.19", optional = true}
clickhouse-connect = {version = "^0.7.15", optional = true}
# Optional Sagemaker dependency
boto3 = {version ="^1.35.26", optional = true}
boto3 = {version ="^1.34.139", optional = true}
# Optional Qdrant client
qdrant-client = {version ="^1.9.0", optional = true}
# Optional Reranker dependencies
torch = {version ="^2.4.1", optional = true}
sentence-transformers = {version ="^3.1.1", optional = true}
torch = {version ="^2.3.1", optional = true}
sentence-transformers = {version ="^3.0.1", optional = true}
# Optional UI
gradio = {version ="^4.44.0", optional = true}
ffmpy = {version ="^0.4.0", optional = true}
gradio = {version ="^4.37.2", optional = true}
# Optional HF Transformers
einops = {version = "^0.8.0", optional = true}
retry-async = "^0.1.4"
# Optional Google Gemini dependency
google-generativeai = {version ="^0.5.4", optional = true}
[tool.poetry.extras]
ui = ["gradio", "ffmpy"]
ui = ["gradio"]
llms-llama-cpp = ["llama-index-llms-llama-cpp"]
llms-openai = ["llama-index-llms-openai"]
llms-openai-like = ["llama-index-llms-openai-like"]
llms-ollama = ["llama-index-llms-ollama"]
llms-sagemaker = ["boto3"]
llms-azopenai = ["llama-index-llms-azure-openai"]
llms-gemini = ["llama-index-llms-gemini"]
llms-gemini = ["llama-index-llms-gemini", "google-generativeai"]
embeddings-ollama = ["llama-index-embeddings-ollama"]
embeddings-huggingface = ["llama-index-embeddings-huggingface", "einops"]
embeddings-huggingface = ["llama-index-embeddings-huggingface"]
embeddings-openai = ["llama-index-embeddings-openai"]
embeddings-sagemaker = ["boto3"]
embeddings-azopenai = ["llama-index-embeddings-azure-openai"]
embeddings-gemini = ["llama-index-embeddings-gemini"]
embeddings-mistral = ["llama-index-embeddings-mistralai"]
vector-stores-qdrant = ["llama-index-vector-stores-qdrant"]
vector-stores-clickhouse = ["llama-index-vector-stores-clickhouse", "clickhouse_connect"]
vector-stores-chroma = ["llama-index-vector-stores-chroma"]
@ -85,14 +84,14 @@ storage-nodestore-postgres = ["llama-index-storage-docstore-postgres","llama-ind
rerank-sentence-transformers = ["torch", "sentence-transformers"]
[tool.poetry.group.dev.dependencies]
black = "^24"
mypy = "^1.11"
pre-commit = "^3"
pytest = "^8"
pytest-cov = "^5"
black = "^22"
mypy = "^1.2"
pre-commit = "^2"
pytest = "^7"
pytest-cov = "^3"
ruff = "^0"
pytest-asyncio = "^0.24.0"
types-pyyaml = "^6.0.12.20240917"
pytest-asyncio = "^0.21.1"
types-pyyaml = "^6.0.12.12"
[build-system]
requires = ["poetry-core>=1.0.0"]
@ -120,7 +119,7 @@ target-version = ['py311']
target-version = 'py311'
# See all rules at https://beta.ruff.rs/docs/rules/
lint.select = [
select = [
"E", # pycodestyle
"W", # pycodestyle
"F", # Pyflakes
@ -137,7 +136,7 @@ lint.select = [
"RUF", # Ruff-specific rules
]
lint.ignore = [
ignore = [
"E501", # "Line too long"
# -> line length already regulated by black
"PT011", # "pytest.raises() should specify expected exception"
@ -155,24 +154,24 @@ lint.ignore = [
# -> "Missing docstring in public function too restrictive"
]
[tool.ruff.lint.pydocstyle]
[tool.ruff.pydocstyle]
# Automatically disable rules that are incompatible with Google docstring convention
convention = "google"
[tool.ruff.lint.pycodestyle]
[tool.ruff.pycodestyle]
max-doc-length = 88
[tool.ruff.lint.flake8-tidy-imports]
[tool.ruff.flake8-tidy-imports]
ban-relative-imports = "all"
[tool.ruff.lint.flake8-type-checking]
[tool.ruff.flake8-type-checking]
strict = true
runtime-evaluated-base-classes = ["pydantic.BaseModel"]
# Pydantic needs to be able to evaluate types at runtime
# see https://pypi.org/project/flake8-type-checking/ for flake8-type-checking documentation
# see https://beta.ruff.rs/docs/settings/#flake8-type-checking-runtime-evaluated-base-classes for ruff documentation
[tool.ruff.lint.per-file-ignores]
[tool.ruff.per-file-ignores]
# Allow missing docstrings for tests
"tests/**/*.py" = ["D1"]

View file

@ -7,13 +7,12 @@ from pathlib import Path
from private_gpt.di import global_injector
from private_gpt.server.ingest.ingest_service import IngestService
from private_gpt.server.ingest.ingest_watcher import IngestWatcher
from private_gpt.settings.settings import Settings
logger = logging.getLogger(__name__)
class LocalIngestWorker:
def __init__(self, ingest_service: IngestService, setting: Settings) -> None:
def __init__(self, ingest_service: IngestService) -> None:
self.ingest_service = ingest_service
self.total_documents = 0
@ -21,24 +20,6 @@ class LocalIngestWorker:
self._files_under_root_folder: list[Path] = []
self.is_local_ingestion_enabled = setting.data.local_ingestion.enabled
self.allowed_local_folders = setting.data.local_ingestion.allow_ingest_from
def _validate_folder(self, folder_path: Path) -> None:
if not self.is_local_ingestion_enabled:
raise ValueError(
"Local ingestion is disabled."
"You can enable it in settings `ingestion.enabled`"
)
# Allow all folders if wildcard is present
if "*" in self.allowed_local_folders:
return
for allowed_folder in self.allowed_local_folders:
if not folder_path.is_relative_to(allowed_folder):
raise ValueError(f"Folder {folder_path} is not allowed for ingestion")
def _find_all_files_in_folder(self, root_path: Path, ignored: list[str]) -> None:
"""Search all files under the root folder recursively.
@ -47,7 +28,6 @@ class LocalIngestWorker:
for file_path in root_path.iterdir():
if file_path.is_file() and file_path.name not in ignored:
self.total_documents += 1
self._validate_folder(file_path)
self._files_under_root_folder.append(file_path)
elif file_path.is_dir() and file_path.name not in ignored:
self._find_all_files_in_folder(file_path, ignored)
@ -112,13 +92,13 @@ if args.log_file:
logger.addHandler(file_handler)
if __name__ == "__main__":
root_path = Path(args.folder)
if not root_path.exists():
raise ValueError(f"Path {args.folder} does not exist")
ingest_service = global_injector.get(IngestService)
settings = global_injector.get(Settings)
worker = LocalIngestWorker(ingest_service, settings)
worker = LocalIngestWorker(ingest_service)
worker.ingest_folder(root_path, args.ignored)
if args.ignored:

View file

@ -6,21 +6,21 @@ llm:
mode: ${PGPT_MODE:mock}
embedding:
mode: ${PGPT_EMBED_MODE:mock}
mode: ${PGPT_MODE:sagemaker}
llamacpp:
llm_hf_repo_id: ${PGPT_HF_REPO_ID:lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF}
llm_hf_model_file: ${PGPT_HF_MODEL_FILE:Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf}
llm_hf_repo_id: ${PGPT_HF_REPO_ID:TheBloke/Mistral-7B-Instruct-v0.1-GGUF}
llm_hf_model_file: ${PGPT_HF_MODEL_FILE:mistral-7b-instruct-v0.1.Q4_K_M.gguf}
huggingface:
embedding_hf_model_name: ${PGPT_EMBEDDING_HF_MODEL_NAME:nomic-ai/nomic-embed-text-v1.5}
embedding_hf_model_name: ${PGPT_EMBEDDING_HF_MODEL_NAME:BAAI/bge-small-en-v1.5}
sagemaker:
llm_endpoint_name: ${PGPT_SAGEMAKER_LLM_ENDPOINT_NAME:}
embedding_endpoint_name: ${PGPT_SAGEMAKER_EMBEDDING_ENDPOINT_NAME:}
ollama:
llm_model: ${PGPT_OLLAMA_LLM_MODEL:llama3.1}
llm_model: ${PGPT_OLLAMA_LLM_MODEL:mistral}
embedding_model: ${PGPT_OLLAMA_EMBEDDING_MODEL:nomic-embed-text}
api_base: ${PGPT_OLLAMA_API_BASE:http://ollama:11434}
embedding_api_base: ${PGPT_OLLAMA_EMBEDDING_API_BASE:http://ollama:11434}
@ -30,7 +30,6 @@ ollama:
repeat_last_n: ${PGPT_OLLAMA_REPEAT_LAST_N:64}
repeat_penalty: ${PGPT_OLLAMA_REPEAT_PENALTY:1.2}
request_timeout: ${PGPT_OLLAMA_REQUEST_TIMEOUT:600.0}
autopull_models: ${PGPT_OLLAMA_AUTOPULL_MODELS:true}
ui:
enabled: true

View file

@ -7,18 +7,18 @@ llm:
# Should be matching the selected model
max_new_tokens: 512
context_window: 3900
tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
prompt_style: "llama3"
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
prompt_style: "mistral"
llamacpp:
llm_hf_repo_id: lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF
llm_hf_model_file: Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
embedding:
mode: huggingface
huggingface:
embedding_hf_model_name: nomic-ai/nomic-embed-text-v1.5
embedding_hf_model_name: BAAI/bge-small-en-v1.5
vectorstore:
database: qdrant

View file

@ -14,7 +14,7 @@ embedding:
embed_dim: 768
ollama:
llm_model: llama3.1
llm_model: mistral
embedding_model: nomic-embed-text
api_base: http://localhost:11434

View file

@ -11,7 +11,7 @@ embedding:
mode: ollama
ollama:
llm_model: llama3.1
llm_model: mistral
embedding_model: nomic-embed-text
api_base: http://localhost:11434
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama

View file

@ -4,7 +4,7 @@ server:
llm:
mode: openailike
max_new_tokens: 512
tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
tokenizer: mistralai/Mistral-7B-Instruct-v0.2
temperature: 0.1
embedding:
@ -12,7 +12,7 @@ embedding:
ingest_mode: simple
huggingface:
embedding_hf_model_name: nomic-ai/nomic-embed-text-v1.5
embedding_hf_model_name: BAAI/bge-small-en-v1.5
openai:
api_base: http://localhost:8000/v1

View file

@ -17,16 +17,11 @@ server:
secret: "Basic c2VjcmV0OmtleQ=="
data:
local_ingestion:
enabled: ${LOCAL_INGESTION_ENABLED:false}
allow_ingest_from: ["*"]
local_data_folder: local_data/private_gpt
ui:
enabled: true
path: /
# "RAG", "Search", "Basic", or "Summarize"
default_mode: "RAG"
default_chat_system_prompt: >
You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible and follow ALL given instructions.
@ -36,24 +31,17 @@ ui:
You can only answer questions about the provided context.
If you know the answer but it is not based in the provided context, don't provide
the answer, just state the answer is not in the context provided.
default_summarization_system_prompt: >
Provide a comprehensive summary of the provided context information.
The summary should cover all the key points and main ideas presented in
the original text, while also condensing the information into a concise
and easy-to-understand format. Please ensure that the summary includes
relevant details and examples that support the main ideas, while avoiding
any unnecessary information or repetition.
delete_file_button_enabled: true
delete_all_files_button_enabled: true
llm:
mode: llamacpp
prompt_style: "llama3"
prompt_style: "mistral"
# Should be matching the selected model
max_new_tokens: 512
context_window: 3900
# Select your tokenizer. Llama-index tokenizer is the default.
# tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
# tokenizer: mistralai/Mistral-7B-Instruct-v0.2
temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
rag:
@ -66,9 +54,6 @@ rag:
model: cross-encoder/ms-marco-MiniLM-L-2-v2
top_n: 1
summarize:
use_async: true
clickhouse:
host: localhost
port: 8443
@ -77,8 +62,8 @@ clickhouse:
database: embeddings
llamacpp:
llm_hf_repo_id: lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF
llm_hf_model_file: Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
llm_hf_repo_id: TheBloke/Mistral-7B-Instruct-v0.2-GGUF
llm_hf_model_file: mistral-7b-instruct-v0.2.Q4_K_M.gguf
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
top_p: 1.0 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
@ -88,14 +73,11 @@ embedding:
# Should be matching the value above in most cases
mode: huggingface
ingest_mode: simple
embed_dim: 768 # 768 is for nomic-ai/nomic-embed-text-v1.5
embed_dim: 384 # 384 is for BAAI/bge-small-en-v1.5
huggingface:
embedding_hf_model_name: nomic-ai/nomic-embed-text-v1.5
embedding_hf_model_name: BAAI/bge-small-en-v1.5
access_token: ${HF_TOKEN:}
# Warning: Enabling this option will allow the model to download and execute code from the internet.
# Nomic AI requires this option to be enabled to use the model, be aware if you are using a different model.
trust_remote_code: true
vectorstore:
database: qdrant
@ -129,13 +111,12 @@ openai:
embedding_api_key: ${OPENAI_API_KEY:}
ollama:
llm_model: llama3.1
llm_model: llama2
embedding_model: nomic-embed-text
api_base: http://localhost:11434
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama
keep_alive: 5m
request_timeout: 120.0
autopull_models: true
azopenai:
api_key: ${AZ_OPENAI_API_KEY:}

View file

@ -5,7 +5,7 @@ from private_gpt.launcher import create_app
from tests.fixtures.mock_injector import MockInjector
@pytest.fixture
@pytest.fixture()
def test_client(request: pytest.FixtureRequest, injector: MockInjector) -> TestClient:
if request is not None and hasattr(request, "param"):
injector.bind_settings(request.param or {})

View file

@ -19,6 +19,6 @@ class IngestHelper:
return ingest_result
@pytest.fixture
@pytest.fixture()
def ingest_helper(test_client: TestClient) -> IngestHelper:
return IngestHelper(test_client)

View file

@ -37,6 +37,6 @@ class MockInjector:
return self.test_injector.get(interface)
@pytest.fixture
@pytest.fixture()
def injector() -> MockInjector:
return MockInjector()

View file

@ -1,74 +0,0 @@
import os
import subprocess
from pathlib import Path
import pytest
from fastapi.testclient import TestClient
@pytest.fixture
def file_path() -> str:
return "test.txt"
def create_test_file(file_path: str) -> None:
with open(file_path, "w") as f:
f.write("test")
def clear_log_file(log_file_path: str) -> None:
if Path(log_file_path).exists():
os.remove(log_file_path)
def read_log_file(log_file_path: str) -> str:
with open(log_file_path) as f:
return f.read()
def init_structure(folder: str, file_path: str) -> None:
clear_log_file(file_path)
os.makedirs(folder, exist_ok=True)
create_test_file(f"{folder}/${file_path}")
def test_ingest_one_file_in_allowed_folder(
file_path: str, test_client: TestClient
) -> None:
allowed_folder = "local_data/tests/allowed_folder"
init_structure(allowed_folder, file_path)
test_env = os.environ.copy()
test_env["PGPT_PROFILES"] = "test"
test_env["LOCAL_INGESTION_ENABLED"] = "True"
result = subprocess.run(
["python", "scripts/ingest_folder.py", allowed_folder],
capture_output=True,
text=True,
env=test_env,
)
assert result.returncode == 0, f"Script failed with error: {result.stderr}"
response_after = test_client.get("/v1/ingest/list")
count_ingest_after = len(response_after.json()["data"])
assert count_ingest_after > 0, "No documents were ingested"
def test_ingest_disabled(file_path: str) -> None:
allowed_folder = "local_data/tests/allowed_folder"
init_structure(allowed_folder, file_path)
test_env = os.environ.copy()
test_env["PGPT_PROFILES"] = "test"
test_env["LOCAL_INGESTION_ENABLED"] = "False"
result = subprocess.run(
["python", "scripts/ingest_folder.py", allowed_folder],
capture_output=True,
text=True,
env=test_env,
)
assert result.returncode != 0, f"Script failed with error: {result.stderr}"

View file

@ -1,159 +0,0 @@
from fastapi.testclient import TestClient
from private_gpt.server.recipes.summarize.summarize_router import (
SummarizeBody,
SummarizeResponse,
)
def test_summarize_route_produces_a_stream(test_client: TestClient) -> None:
body = SummarizeBody(
text="Test",
stream=True,
)
response = test_client.post("/v1/summarize", json=body.model_dump())
raw_events = response.text.split("\n\n")
events = [
item.removeprefix("data: ") for item in raw_events if item.startswith("data: ")
]
assert response.status_code == 200
assert "text/event-stream" in response.headers["content-type"]
assert len(events) > 0
assert events[-1] == "[DONE]"
def test_summarize_route_produces_a_single_value(test_client: TestClient) -> None:
body = SummarizeBody(
text="test",
stream=False,
)
response = test_client.post("/v1/summarize", json=body.model_dump())
# No asserts, if it validates it's good
SummarizeResponse.model_validate(response.json())
assert response.status_code == 200
def test_summarize_with_document_context(test_client: TestClient) -> None:
# Ingest an document
ingest_response = test_client.post(
"/v1/ingest/text",
json={
"file_name": "file_name",
"text": "Lorem ipsum dolor sit amet",
},
)
assert ingest_response.status_code == 200
ingested_docs = ingest_response.json()["data"]
assert len(ingested_docs) == 1
body = SummarizeBody(
use_context=True,
context_filter={"docs_ids": [doc["doc_id"] for doc in ingested_docs]},
stream=False,
)
response = test_client.post("/v1/summarize", json=body.model_dump())
completion: SummarizeResponse = SummarizeResponse.model_validate(response.json())
assert response.status_code == 200
# We can check the content of the completion, because mock LLM used in tests
# always echoes the prompt. In the case of summary, the input context is passed.
assert completion.summary.find("Lorem ipsum dolor sit amet") != -1
def test_summarize_with_non_existent_document_context_not_fails(
test_client: TestClient,
) -> None:
body = SummarizeBody(
use_context=True,
context_filter={
"docs_ids": ["non-existent-doc-id"],
},
stream=False,
)
response = test_client.post("/v1/summarize", json=body.model_dump())
completion: SummarizeResponse = SummarizeResponse.model_validate(response.json())
assert response.status_code == 200
# We can check the content of the completion, because mock LLM used in tests
# always echoes the prompt. In the case of summary, the input context is passed.
assert completion.summary.find("Empty Response") != -1
def test_summarize_with_metadata_and_document_context(test_client: TestClient) -> None:
docs = []
# Ingest a first document
document_1_content = "Content of document 1"
ingest_response = test_client.post(
"/v1/ingest/text",
json={
"file_name": "file_name_1",
"text": document_1_content,
},
)
assert ingest_response.status_code == 200
ingested_docs = ingest_response.json()["data"]
assert len(ingested_docs) == 1
docs += ingested_docs
# Ingest a second document
document_2_content = "Text of document 2"
ingest_response = test_client.post(
"/v1/ingest/text",
json={
"file_name": "file_name_2",
"text": document_2_content,
},
)
assert ingest_response.status_code == 200
ingested_docs = ingest_response.json()["data"]
assert len(ingested_docs) == 1
docs += ingested_docs
# Completions with the first document's id and the second document's metadata
body = SummarizeBody(
use_context=True,
context_filter={"docs_ids": [doc["doc_id"] for doc in docs]},
stream=False,
)
response = test_client.post("/v1/summarize", json=body.model_dump())
completion: SummarizeResponse = SummarizeResponse.model_validate(response.json())
assert response.status_code == 200
# Assert both documents are part of the used sources
# We can check the content of the completion, because mock LLM used in tests
# always echoes the prompt. In the case of summary, the input context is passed.
assert completion.summary.find(document_1_content) != -1
assert completion.summary.find(document_2_content) != -1
def test_summarize_with_prompt(test_client: TestClient) -> None:
ingest_response = test_client.post(
"/v1/ingest/text",
json={
"file_name": "file_name",
"text": "Lorem ipsum dolor sit amet",
},
)
assert ingest_response.status_code == 200
ingested_docs = ingest_response.json()["data"]
assert len(ingested_docs) == 1
body = SummarizeBody(
use_context=True,
context_filter={
"docs_ids": [doc["doc_id"] for doc in ingested_docs],
},
prompt="This is a custom summary prompt, 54321",
stream=False,
)
response = test_client.post("/v1/summarize", json=body.model_dump())
completion: SummarizeResponse = SummarizeResponse.model_validate(response.json())
assert response.status_code == 200
# We can check the content of the completion, because mock LLM used in tests
# always echoes the prompt. In the case of summary, the input context is passed.
assert completion.summary.find("This is a custom summary prompt, 54321") != -1

View file

@ -5,7 +5,6 @@ from private_gpt.components.llm.prompt_helper import (
ChatMLPromptStyle,
DefaultPromptStyle,
Llama2PromptStyle,
Llama3PromptStyle,
MistralPromptStyle,
TagPromptStyle,
get_prompt_style,
@ -140,57 +139,3 @@ def test_llama2_prompt_style_with_system_prompt():
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
def test_llama3_prompt_style_format():
prompt_style = Llama3PromptStyle()
messages = [
ChatMessage(content="You are a helpful assistant", role=MessageRole.SYSTEM),
ChatMessage(content="Hello, how are you doing?", role=MessageRole.USER),
]
expected_prompt = (
"<|start_header_id|>system<|end_header_id|>\n\n"
"You are a helpful assistant<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n"
"Hello, how are you doing?<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt
def test_llama3_prompt_style_with_default_system():
prompt_style = Llama3PromptStyle()
messages = [
ChatMessage(content="Hello!", role=MessageRole.USER),
]
expected = (
"<|start_header_id|>system<|end_header_id|>\n\n"
f"{prompt_style.DEFAULT_SYSTEM_PROMPT}<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\nHello!<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
assert prompt_style._messages_to_prompt(messages) == expected
def test_llama3_prompt_style_with_assistant_response():
prompt_style = Llama3PromptStyle()
messages = [
ChatMessage(content="You are a helpful assistant", role=MessageRole.SYSTEM),
ChatMessage(content="What is the capital of France?", role=MessageRole.USER),
ChatMessage(
content="The capital of France is Paris.", role=MessageRole.ASSISTANT
),
]
expected_prompt = (
"<|start_header_id|>system<|end_header_id|>\n\n"
"You are a helpful assistant<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n"
"What is the capital of France?<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
"The capital of France is Paris.<|eot_id|>"
)
assert prompt_style.messages_to_prompt(messages) == expected_prompt

View file

@ -1 +1 @@
0.6.2
0.5.0