mirror of
https://github.com/zylon-ai/private-gpt.git
synced 2025-12-22 23:22:57 +01:00
169 lines
6 KiB
Python
169 lines
6 KiB
Python
from fastapi import APIRouter, Depends, Request, Security, HTTPException, status
|
|
from private_gpt.server.ingest.ingest_service import IngestService
|
|
from pydantic import BaseModel
|
|
from sqlalchemy.orm import Session
|
|
import traceback
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
from starlette.responses import StreamingResponse
|
|
|
|
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
|
from private_gpt.open_ai.openai_models import (
|
|
OpenAICompletion,
|
|
OpenAIMessage,
|
|
)
|
|
from private_gpt.server.chat.chat_router import ChatBody, chat_completion
|
|
from private_gpt.server.utils.auth import authenticated
|
|
from private_gpt.users.api import deps
|
|
from private_gpt.users import crud, models, schemas
|
|
completions_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
|
|
|
|
|
|
class CompletionsBody(BaseModel):
|
|
prompt: str
|
|
system_prompt: str | None = None
|
|
use_context: bool = False
|
|
context_filter: ContextFilter | None = None
|
|
include_sources: bool = True
|
|
stream: bool = False
|
|
|
|
model_config = {
|
|
"json_schema_extra": {
|
|
"examples": [
|
|
{
|
|
"prompt": "How do you fry an egg?",
|
|
"system_prompt": "You are a rapper. Always answer with a rap.",
|
|
"stream": False,
|
|
"use_context": False,
|
|
"include_sources": False,
|
|
}
|
|
]
|
|
}
|
|
}
|
|
|
|
|
|
# @completions_router.post(
|
|
# "/completions",
|
|
# response_model=None,
|
|
# summary="Completion",
|
|
# responses={200: {"model": OpenAICompletion}},
|
|
# tags=["Contextual Completions"],
|
|
# )
|
|
# def prompt_completion(
|
|
# request: Request, body: CompletionsBody
|
|
# ) -> OpenAICompletion | StreamingResponse:
|
|
# """We recommend most users use our Chat completions API.
|
|
|
|
# Given a prompt, the model will return one predicted completion.
|
|
|
|
# Optionally include a `system_prompt` to influence the way the LLM answers.
|
|
|
|
# If `use_context`
|
|
# is set to `true`, the model will use context coming from the ingested documents
|
|
# to create the response. The documents being used can be filtered using the
|
|
# `context_filter` and passing the document IDs to be used. Ingested documents IDs
|
|
# can be found using `/ingest/list` endpoint. If you want all ingested documents to
|
|
# be used, remove `context_filter` altogether.
|
|
|
|
# When using `'include_sources': true`, the API will return the source Chunks used
|
|
# to create the response, which come from the context provided.
|
|
|
|
# When using `'stream': true`, the API will return data chunks following [OpenAI's
|
|
# streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
|
|
# ```
|
|
# {"id":"12345","object":"completion.chunk","created":1694268190,
|
|
# "model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
|
|
# "finish_reason":null}]}
|
|
# ```
|
|
# """
|
|
# messages = [OpenAIMessage(content=body.prompt, role="user")]
|
|
# # If system prompt is passed, create a fake message with the system prompt.
|
|
# if body.system_prompt:
|
|
# messages.insert(0, OpenAIMessage(content=body.system_prompt, role="system"))
|
|
|
|
# chat_body = ChatBody(
|
|
# messages=messages,
|
|
# use_context=body.use_context,
|
|
# stream=body.stream,
|
|
# include_sources=body.include_sources,
|
|
# context_filter=body.context_filter,
|
|
# )
|
|
# return chat_completion(request, chat_body)
|
|
|
|
|
|
@completions_router.post(
|
|
"/chat",
|
|
response_model=None,
|
|
summary="Completion",
|
|
responses={200: {"model": OpenAICompletion}},
|
|
tags=["Contextual Completions"],
|
|
openapi_extra={
|
|
"x-fern-streaming": {
|
|
"stream-condition": "stream",
|
|
"response": {"$ref": "#/components/schemas/OpenAICompletion"},
|
|
"response-stream": {"$ref": "#/components/schemas/OpenAICompletion"},
|
|
}
|
|
},
|
|
)
|
|
async def prompt_completion(
|
|
request: Request,
|
|
body: CompletionsBody,
|
|
db: Session = Depends(deps.get_db),
|
|
log_audit: models.Audit = Depends(deps.get_audit_logger),
|
|
current_user: models.User = Security(
|
|
deps.get_current_user,
|
|
),
|
|
) -> OpenAICompletion | StreamingResponse:
|
|
|
|
service = request.state.injector.get(IngestService)
|
|
try:
|
|
department = crud.department.get_by_id(
|
|
db, id=current_user.department_id)
|
|
if not department:
|
|
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND,
|
|
detail=f"No department assigned to you")
|
|
documents = crud.documents.get_enabled_documents_by_departments(
|
|
db, department_id=department.id)
|
|
if not documents:
|
|
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND,
|
|
detail=f"No documents uploaded for your department.")
|
|
docs_list = [document.filename for document in documents]
|
|
print("DOCUMENTS ASSIGNED TO THIS DEPARTMENTS: ", docs_list)
|
|
docs_ids = []
|
|
for filename in docs_list:
|
|
doc_id = service.get_doc_ids_by_filename(filename)
|
|
docs_ids.extend(doc_id)
|
|
body.context_filter = {"docs_ids": docs_ids}
|
|
|
|
except Exception as e:
|
|
print(traceback.format_exc())
|
|
logger.error(f"There was an error: {str(e)}")
|
|
raise HTTPException(
|
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
|
detail="Internal Server Error",
|
|
)
|
|
|
|
messages = [OpenAIMessage(content=body.prompt, role="user")]
|
|
if body.system_prompt:
|
|
messages.insert(0, OpenAIMessage(
|
|
content=body.system_prompt, role="system"))
|
|
|
|
chat_body = ChatBody(
|
|
messages=messages,
|
|
use_context=body.use_context,
|
|
stream=body.stream,
|
|
include_sources=body.include_sources,
|
|
context_filter=body.context_filter,
|
|
)
|
|
log_audit(
|
|
model='Chat',
|
|
action='Chat',
|
|
details={
|
|
"query": body.prompt,
|
|
'user': current_user.username,
|
|
},
|
|
user_id=current_user.id
|
|
)
|
|
return await chat_completion(request, chat_body)
|