mirror of
https://github.com/zylon-ai/private-gpt.git
synced 2025-12-22 20:12:55 +01:00
* Dockerize private-gpt * Use port 8001 for local development * Add setup script * Add CUDA Dockerfile * Create README.md * Make the API use OpenAI response format * Truncate prompt * refactor: add models and __pycache__ to .gitignore * Better naming * Update readme * Move models ignore to it's folder * Add scaffolding * Apply formatting * Fix tests * Working sagemaker custom llm * Fix linting * Fix linting * Enable streaming * Allow all 3.11 python versions * Use llama 2 prompt format and fix completion * Restructure (#3) Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Fix Dockerfile * Use a specific build stage * Cleanup * Add FastAPI skeleton * Cleanup openai package * Fix DI and tests * Split tests and tests with coverage * Remove old scaffolding * Add settings logic (#4) * Add settings logic * Add settings for sagemaker --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Local LLM (#5) * Add settings logic * Add settings for sagemaker * Add settings-local-example.yaml * Delete terraform files * Refactor tests to use fixtures * Join deltas * Add local model support --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Update README.md * Fix tests * Version bump * Enable simple llamaindex observability (#6) * Enable simple llamaindex observability * Improve code through linting * Update README.md * Move to async (#7) * Migrate implementation to use asyncio * Formatting * Cleanup * Linting --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Query Docs and gradio UI * Remove unnecessary files * Git ignore chromadb folder * Async migration + DI Cleanup * Fix tests * Add integration test * Use fastapi responses * Retrieval service with partial implementation * Cleanup * Run formatter * Fix types * Fetch nodes asynchronously * Install local dependencies in tests * Install ui dependencies in tests * Install dependencies for llama-cpp * Fix sudo * Attempt to fix cuda issues * Attempt to fix cuda issues * Try to reclaim some space from ubuntu machine * Retrieval with context * Fix lint and imports * Fix mypy * Make retrieval API a POST * Make Completions body a dataclass * Fix LLM chat message order * Add Query Chunks to Gradio UI * Improve rag query prompt * Rollback CI Changes * Move to sync code * Using Llamaindex abstraction for query retrieval * Fix types * Default to CONDENSED chat mode for contextualized chat * Rename route function * Add Chat endpoint * Remove webhooks * Add IntelliJ run config to gitignore * .gitignore applied * Sync chat completion * Refactor total * Typo in context_files.py * Add embeddings component and service * Remove wrong dataclass from IngestService * Filter by context file id implementation * Fix typing * Implement context_filter and separate from the bool use_context in the API * Change chunks api to avoid conceptual class of the context concept * Deprecate completions and fix tests * Remove remaining dataclasses * Use embedding component in ingest service * Fix ingestion to have multipart and local upload * Fix ingestion API * Add chunk tests * Add configurable paths * Cleaning up * Add more docs * IngestResponse includes a list of IngestedDocs * Use IngestedDoc in the Chunk document reference * Rename ingest routes to ingest_router.py * Fix test working directory for intellij * Set testpaths for pytest * Remove unused as_chat_engine * Add .fleet ide to gitignore * Make LLM and Embedding model configurable * Fix imports and checks * Let local_data folder exist empty in the repository * Don't use certain metadata in LLM * Remove long lines * Fix windows installation * Typos * Update poetry.lock * Add TODO for linux * Script and first version of docs * No jekill build * Fix relative url to openapi json * Change default docs values * Move chromadb dependency to the general group * Fix tests to use separate local_data * Create CNAME * Update CNAME * Fix openapi.json relative path * PrivateGPT logo * WIP OpenAPI documentation metadata * Add ingest script (#11) * Add ingest script * Fix broken name refactor * Add ingest docs and Makefile script * Linting * Move transformers to main dependency * Move torch to main dependencies * Don't load HuggingFaceEmbedding in tests * Fix lint --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> * Rename file to camel_case * Commit settings-local.yaml * Move documentation to public docs * Fix docker image for linux * Installation and Running the Server documentation * Move back to docs folder, as it is the only supported by github pages * Delete CNAME * Create CNAME * Delete CNAME * Create CNAME * Improved API documentation * Fix lint * Completions documentation * Updated openapi scheme * Ingestion API doc * Minor doc changes * Updated openapi scheme * Chunks API documentation * Embeddings and Health API, and homogeneous responses * Revamp README with new skeleton of content * More docs * PrivateGPT logo * Improve UI * Update ingestion docu * Update README with new sections * Use context window in the retriever * Gradio Documentation * Add logo to UI * Include Contributing and Community sections to README * Update links to resources in the README * Small README.md updates * Wrap lines of README.md * Don't put health under /v1 * Add copy button to Chat * Architecture documentation * Updated openapi.json * Updated openapi.json * Updated openapi.json * Change UI label * Update documentation * Add releases link to README.md * Gradio avatar and stop debug * Readme update * Clean old files * Remove unused terraform checks * Update twitter link. * Disable minimum coverage * Clean install message in README.md --------- Co-authored-by: Pablo Orgaz <pablo@Pablos-MacBook-Pro.local> Co-authored-by: Iván Martínez <ivanmartit@gmail.com> Co-authored-by: RubenGuerrero <ruben.guerrero@boopos.com> Co-authored-by: Daniel Gallego Vico <daniel.gallego@bq.com>
82 lines
2.8 KiB
Python
82 lines
2.8 KiB
Python
from fastapi import APIRouter
|
|
from llama_index.llms import ChatMessage, MessageRole
|
|
from pydantic import BaseModel
|
|
from starlette.responses import StreamingResponse
|
|
|
|
from private_gpt.di import root_injector
|
|
from private_gpt.open_ai.extensions.context_filter import ContextFilter
|
|
from private_gpt.open_ai.openai_models import (
|
|
OpenAICompletion,
|
|
OpenAIMessage,
|
|
to_openai_response,
|
|
to_openai_sse_stream,
|
|
)
|
|
from private_gpt.server.chat.chat_service import ChatService
|
|
|
|
chat_router = APIRouter(prefix="/v1")
|
|
|
|
|
|
class ChatBody(BaseModel):
|
|
messages: list[OpenAIMessage]
|
|
use_context: bool = False
|
|
context_filter: ContextFilter | None = None
|
|
stream: bool = False
|
|
|
|
model_config = {
|
|
"json_schema_extra": {
|
|
"examples": [
|
|
{
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "How do you fry an egg?",
|
|
}
|
|
],
|
|
"stream": False,
|
|
"use_context": True,
|
|
"context_filter": {
|
|
"docs_ids": ["c202d5e6-7b69-4869-81cc-dd574ee8ee11"]
|
|
},
|
|
}
|
|
]
|
|
}
|
|
}
|
|
|
|
|
|
@chat_router.post(
|
|
"/chat/completions",
|
|
response_model=None,
|
|
responses={200: {"model": OpenAICompletion}},
|
|
tags=["Contextual Completions"],
|
|
)
|
|
def chat_completion(body: ChatBody) -> OpenAICompletion | StreamingResponse:
|
|
"""Given a list of messages comprising a conversation, return a response.
|
|
|
|
If `use_context` is set to `true`, the model will use context coming
|
|
from the ingested documents to create the response. The documents being used can
|
|
be filtered using the `context_filter` and passing the document IDs to be used.
|
|
Ingested documents IDs can be found using `/ingest/list` endpoint. If you want
|
|
all ingested documents to be used, remove `context_filter` altogether.
|
|
|
|
When using `'stream': true`, the API will return data chunks following [OpenAI's
|
|
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
|
|
```
|
|
{"id":"12345","object":"completion.chunk","created":1694268190,
|
|
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
|
|
"finish_reason":null}]}
|
|
```
|
|
"""
|
|
service = root_injector.get(ChatService)
|
|
all_messages = [
|
|
ChatMessage(content=m.content, role=MessageRole(m.role)) for m in body.messages
|
|
]
|
|
if body.stream:
|
|
stream = service.stream_chat(
|
|
all_messages, body.use_context, body.context_filter
|
|
)
|
|
return StreamingResponse(
|
|
to_openai_sse_stream(stream), media_type="text/event-stream"
|
|
)
|
|
else:
|
|
response = service.chat(all_messages, body.use_context, body.context_filter)
|
|
return to_openai_response(response)
|