private-gpt/private_gpt/server/chat/chat_service.py

219 lines
8.6 KiB
Python

from dataclasses import dataclass
from injector import inject, singleton
from llama_index.core.chat_engine import ContextChatEngine, SimpleChatEngine, CondensePlusContextChatEngine
from llama_index.core.chat_engine.types import (
BaseChatEngine,
)
from llama_index.core.indices import VectorStoreIndex
from llama_index.core.indices.postprocessor import MetadataReplacementPostProcessor
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.postprocessor import (
SentenceTransformerRerank,
SimilarityPostprocessor,
)
from llama_index.core.storage import StorageContext
from llama_index.core.types import TokenGen
from pydantic import BaseModel
from private_gpt.components.embedding.embedding_component import EmbeddingComponent
from private_gpt.components.llm.llm_component import LLMComponent
from private_gpt.components.node_store.node_store_component import NodeStoreComponent
from private_gpt.components.vector_store.vector_store_component import (
VectorStoreComponent,
)
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chunks.chunks_service import Chunk
from private_gpt.settings.settings import Settings
class Completion(BaseModel):
response: str
sources: list[Chunk] | None = None
class CompletionGen(BaseModel):
response: TokenGen
sources: list[Chunk] | None = None
@dataclass
class ChatEngineInput:
system_message: ChatMessage | None = None
last_message: ChatMessage | None = None
chat_history: list[ChatMessage] | None = None
@classmethod
def from_messages(cls, messages: list[ChatMessage]) -> "ChatEngineInput":
# Detect if there is a system message, extract the last message and chat history
system_message = (
messages[0]
if len(messages) > 0 and messages[0].role == MessageRole.SYSTEM
else None
)
last_message = (
messages[-1]
if len(messages) > 0 and messages[-1].role == MessageRole.USER
else None
)
# Remove from messages list the system message and last message,
# if they exist. The rest is the chat history.
if system_message:
messages.pop(0)
if last_message:
messages.pop(-1)
chat_history = messages if len(messages) > 0 else None
return cls(
system_message=system_message,
last_message=last_message,
chat_history=chat_history,
)
@singleton
class ChatService:
settings: Settings
@inject
def __init__(
self,
settings: Settings,
llm_component: LLMComponent,
vector_store_component: VectorStoreComponent,
embedding_component: EmbeddingComponent,
node_store_component: NodeStoreComponent,
) -> None:
self.settings = settings
self.llm_component = llm_component
self.embedding_component = embedding_component
self.vector_store_component = vector_store_component
self.storage_context = StorageContext.from_defaults(
vector_store=vector_store_component.vector_store,
docstore=node_store_component.doc_store,
index_store=node_store_component.index_store,
)
self.index = VectorStoreIndex.from_vector_store(
vector_store_component.vector_store,
storage_context=self.storage_context,
llm=llm_component.llm,
embed_model=embedding_component.embedding_model,
show_progress=True,
)
def _chat_engine(
self,
system_prompt: str | None = None,
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> BaseChatEngine:
settings = self.settings
if use_context:
vector_index_retriever = self.vector_store_component.get_retriever(
index=self.index,
context_filter=context_filter,
similarity_top_k=self.settings.rag.similarity_top_k,
)
node_postprocessors = [
MetadataReplacementPostProcessor(target_metadata_key="window"),
SimilarityPostprocessor(
similarity_cutoff=settings.rag.similarity_value
),
]
if settings.rag.rerank.enabled:
rerank_postprocessor = SentenceTransformerRerank(
model=settings.rag.rerank.model, top_n=settings.rag.rerank.top_n
)
node_postprocessors.append(rerank_postprocessor)
return CondensePlusContextChatEngine.from_defaults(
system_prompt=system_prompt,
retriever=vector_index_retriever,
llm=self.llm_component.llm, # Takes no effect at the moment
node_postprocessors=node_postprocessors,
)
else:
return SimpleChatEngine.from_defaults(
system_prompt=system_prompt,
llm=self.llm_component.llm,
)
def stream_chat(
self,
messages: list[ChatMessage],
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> CompletionGen:
chat_engine_input = ChatEngineInput.from_messages(messages)
last_message = (
chat_engine_input.last_message.content
if chat_engine_input.last_message
else None
)
system_prompt = (
chat_engine_input.system_message.content
if chat_engine_input.system_message
else None
)
chat_history = (
chat_engine_input.chat_history if chat_engine_input.chat_history else None
)
chat_engine = self._chat_engine(
system_prompt=system_prompt,
use_context=use_context,
context_filter=context_filter,
)
streaming_response = chat_engine.stream_chat(
message=last_message if last_message is not None else "",
chat_history=chat_history,
)
sources = [Chunk.from_node(node) for node in streaming_response.source_nodes]
completion_gen = CompletionGen(
response=streaming_response.response_gen, sources=sources
)
return completion_gen
def chat(
self,
messages: list[ChatMessage],
use_context: bool = False,
context_filter: ContextFilter | None = None,
) -> Completion:
chat_engine_input = ChatEngineInput.from_messages(messages)
last_message = (
chat_engine_input.last_message.content
if chat_engine_input.last_message
else None
)
system_prompt = (
"""
You are a helpful assistant named QuickGPT by Quickfox Consulting.
Your responses must be strictly and exclusively based on the context documents provided.
You are not allowed to use any information, knowledge, or external sources outside of the given context documents.
If the answer to a query is not present in the context documents,
you should respond with "I do not have enough information in the provided context to answer this question."
Your responses should be relevant, informative, and easy to understand.
Aim to deliver high-quality answers that are respectful and helpful, using clear and concise language.
Focus on providing accurate and reliable answers based solely on the given context.
Do not make assumptions, inferences, or draw upon any prior knowledge beyond what is explicitly stated in the context documents.
"""
)
chat_history = (
chat_engine_input.chat_history if chat_engine_input.chat_history else None
)
chat_engine = self._chat_engine(
system_prompt=system_prompt,
use_context=use_context,
context_filter=context_filter,
)
# chat_engine = chat_engine.as_chat_engine(chat_mode="react", llm=self.llm_component.llm, verbose=True) # configuring ReAct Chat engine
wrapped_response = chat_engine.chat(
message=last_message if last_message is not None else "",
chat_history=chat_history,
)
sources = [Chunk.from_node(node) for node in wrapped_response.source_nodes]
completion = Completion(response=wrapped_response.response, sources=sources)
return completion